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PREFACE 

hlodern a i rc raf t ,  rockets, and s e a  vesse ls  requi re  high-precision self- 
contained navigation and guidance sys tems,  which a r e  fur ther  expected to be 
noise-proof, can be s e t  up at a shor t  notice, and will function unattended. 

The last  y e a r s  have been marked by considerable  advances in the field 
of navigation and guidar.ce sys t ems  for  moving objects .  
development of new principles, considerable  efforts have been devoted to 
inertial  navigation sys t ems  which de termine  the cur ren t  position of the 
object by s t ra ightforward integration of the accelerat ions measured  on 
board the moving object. 

Inertial  sys t ems  a r e  cur ren t ly  the most promising and universal  means 
of self-contained, autoromous navigation. However, the dynamic proper t ies  
of completely autonomous iner t ia l  sys t ems  a r e  such that the e r r o r s  of the i r  
e lements  lead to an inevitable buildup of position e r r o r s  with time. 

"hen a self-contained navigation sys tem i s  allowed to function continuously 
for  some time, the measurement  e r r o r s  in the navigation pa rame te r s  may 
eventually exceed the  permiss ib le  limit value. The iner t ia l  s y s t e m  is therefore  
never  made completely autonomous: it is generally aided by external  sou rces  
of guidance information, such a s  as t ronomical  ( s t e l l a r )  correct ion,  a l t imeter  
correct ion,  Doppler correct ion,  and radio-navigation aiding. 

Introduction of external  aiding information into the iner t ia l  sys tem a l t e r s  
the unperturbed operation equations of the sys tem ( i t s  a lgori thm).  
dynamics of i t s  per turbed operation, i.e., the equations of e r r o r s ,  a r e  a l so  
al tered.  Different exte,rnal sou rces  of guidance information may differently 
affect the e r r o r  equations, and in the final account we thus end u p  with 
different dependences of the navigation e r r o r s  on instrumental  e r r o r s  and 
on the e r r o r s  in the external  guidance information. 
a l ternat ives  he re  i s  fairly large.  

a r e  t reated in previously published books.;' These,  however, mainly cover  
isolated, individual topics, and the ana lys i s  i s  general ly  f a r  f rom being 
r igorous  o r  amenable to far-reaching general izat ions.  The  a im of the 
p resen t  book i s  conversely to present a sys temat ic  and r igorous  t reatment  
of the fundamental  problems in the theory of aided iner t ia l  sys tem,  proceed- 
ing f r o m  a single point of view. 
the various means of introducing the cor rec t ion  s ignals  into the sys tem and 
the investigation of the e r r o r  equations. 
a comparat ive analysis  of the dependence of navigation e r r o r s  on instrumen- 
tal e r r o r s  f o r  var ious e.sterna1 sources  of guidance information. 

partly published in recent  yea r s .  

Alongside with the 

The 

The number of possible 

Some part icular  protllems re la ted  to the theory of aided inertial  sys t ems  

The main emphasis  is on the ana lys i s  of 

The ultimate goal of this study i s  

The book is largely based on my original  r e sea rches ,  c a r r i e d  out and 
It i s  a d i rec t  continuation of m y  "Theory 

See, ?.e.. \ I C  C l u r e ,  C.L. Theory of Inertla1 Guidance. - Prenrlce Hall. 1960. 
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of Inertial Navigation: Autonomous Systems," published in Moscow in 1966 
by Nauka Publishing House, and naturally draws upon the resu l t s  and 
techniques of the previous volume. 

The book compr ises  seven chapters .  There  a r e  a l so  three  Appendices, 
covering a number of topics which a r e  not an organic par t  of the theory. 

Chapter 1 i s  introductory in nature: it  re i te ra tes  the fundamental resu l t s  
of the theory of autonomous inertial  sys tems.  

Chapter 2 i s  concerned with the general  aspects  of the application of 
external  guidance information and with the theory of inertial  sys t ems  where 
an al t imeter  provides additional information on the distance of the moving 
object f rom the Ear th ' s  surface.  Systems with three  a rb i t r a r i l y  oriented 
acce lerometers  and sys tems with two horizontal acce le rometers  a r e  
considered. The ideal (unperturbed) operation equations a r e  derived, a s  
well a s  the corresponding e r r o r  equations. 
investigated and the solution of the e r r o r  equations is derived. 

examples of which a r e  the common Schuler pendulum and various 
classical  gyroscopic instruments, such a s  the two-gyro ver t ical  and 
the Geckeler- Anschutz three-degrees-of-freedom gyrocompass horizon. 
Par t icu lar  s t r e s s  is laid on the dynamic analogy between the Schuler-tuned 
gyropendulum sys tems and the two-accelerometer (or two-axis) inertial  
guidance sys tems.  Ishlinskii" was the f i r s t  to ca l l  attention to the possible 
analogy between these two categories  of guidance systems,  and I proved the 
existence of complete dynamic analogy between them. Consequently, a 
number of important resu l t s  f rom the theory of Schuler-tuned sys tems can 
be readily generalized to two-accelerometer inertial  sys tems.  

Chapter 4 deals  with various simplified fo rms  of the ideal operation 
equations of inertial  systems,  including the simplifications associated with 
the near ly  spher ica l  figure of the Ear th  and the near ly  cent ra l  field of i ts  
gravitation. Simplifications resulting f rom part icular  constraints  imposed 
on the object t ra jectory a r e  a l so  considered. These include close t ra jecto-  
r i e s  of objects moving near  the Ear th ' s  surface,  t ra jec tor ies  which a r e  
c lose to some orthodromy on the Ear th ' s  surface,  and cases  of constrained 
velocity. By examining the simplifications in the ideal operation equations 
(i.e.,  in the algorithm of the navigation system),  we can l ea rn  to simplify 
the design of the inertial  sys tem by omitting o r  replacing some of i t s  
elements.  

Chapter 5 presents  the theory of inertial  sys tems where a l t imeter  
correct ion i s  reinforced by additional information f rom a Doppler velocity 
me te r .  
inertial  sys tems inevitably leads to velocity e r r o r s .  
information supplied by a Doppler velocity meter  will eliminate these e r r o r s .  
The residual  e r r o r s  will then depend only on the instrumental  inaccuracy of 
the sys tem elements and the inevitable e r r o r s  in the Doppler information. 
The corresponding relat ions a r e  expressed by the e r r o r  equations, which 
a r e  derived and investigated fo r  different Doppler cor rec t ion  techniques. 

Chapter 6 is concerned with astronomical  ( s te l la r )  cor rec t ion  procedures,  
whereby telescopes a r e  used to fix the directions to  cer ta in  s t a r s .  Combined 
astro-Doppler cor rec t ion  i s  a l so  considered in this chapter .  
that, unlike Doppler and a l t imeter  cor rec t ion  routines, as t rocor rec t ion  

* I s h 1 i n s  k i I ,  A.Yu. The equations of the problem of determination of the position of a moving object using 

The stability of the sys tem is 

Chapter 3 discusses  Schuler-tuned gyropenduhm systems,  particuIar 

I 

I Introduction of damping in the perturbed operation equations of 
Suitable guidance 

It is shown 

gyroscopes and accelerometers. - Prikladnaya Matematika I Mekhanika, Vol. 20, No. 6. 1957. 



affects only the second group of error equations. The resul t ing changes in 
the error equations are  studied for l inear  and relav-type cor rec t ion  routines. 
.A phase as t rocor rec t ion  sys t em using s tar  t r a c k e r s  i s  dealt with in a 
separa te  section. 

sys t ems  with random e r r o r s .  The analysis  i s  c a r r i e d  out within the f r ame-  
work of the cor re la t ion  theory of random processes .  
this  chapter is to  study the d ispers ion  of the navigation e r r o r s  as a function 
o f  the s ta t is t ical  cha rac t e r i s t i c s  of the instrumental  errors fo r  various 
cor rec t ion  techniques. 

Appendix I at  the end of the book desc r ibes  the effect of the sca t t e red  
so Ia r  radiation in the a rmosphere  on the no rma l  operation of a phase a s t r o -  
cor rec t ion  sys t em.  
direct ional  gyro  and a Doppler velocity me te r .  
the problem of d i rec t  acce le romete r  guidance, with or without ex terna l  
guidance information. 
previously published in different periodical journals  ( the  third appendix, in 
cooperation svith I .  C'. Novozhilov). 

continuation of my "Theory of Iner t ia l  Guidance: Autonomous Systems" and 
la rge ly  d raws  upon the r e su l t s  of the previous book. 
s u m m a r i z e s  in a compact f o r m  a l l  the fundamental r e su l t s  of the theory of 
autonotnous iner t ia l  s y s t e m s  and the book can therefore  be r ead  as a n  
independent, self-contained monograph. 

o f  the theory of aided i r e r t i a l  s y s t e m s .  A s  such, it i s  not free f rom errors, 
and a l l  r e m a r k s  and c r i t i c i sm will b e  appreciated.  

In conclusion I would like to acknowledge the g rea t  help of A.Yu. Ishlinskii, 
whose a s s i s t ance  in formulating a number of problems analyzed in th i s  book u a s  
invaluable. I am also grateful  to N . P .  Bukanov, G.I. Vasil'ev-Lyulin, 
E . A .  Devyanin, -4.P. Dern'yanovskii, I .M. Lisovich, I .V.  Novozhilov, 
N . A .  Parusnikov, P .V.  Tarasov ,  and V.1'. Shed'ko for the i r  pa r t  in the 
discussion of various sect ions of the book. 

Chapter 7 dea ls  with the dynamics of autonomous and aided iner t ia l  

The  main object of 

Appendix I1 i s  concerned with c lose  navigation using a 
Appendix I11 investigates 

The ma te r i a l  presented in these  Appendices h a s  been 

One m o r e  point should be borne in mind. The  present volume i s  a d i rec t  

However, Chapter 1 

Th i s  volume appea r s  to  be the first attempt at  a sys temat ic  discussion 

I-. Andveec 
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Chapter 1 

ELE.IfENTS OF THE THEORZ- O F  AC'TOiVO.110LIS 
IArERTIA L NA \-lGATIC~N S I'STEJIS 

§ 1 . 1 .  
OF INERTIAL NAVIGATION SYSTEhIS 

THE I D E A L  OPERATION EQUATIONS 

1 , I  . I .  The fundamental equation of inertial  navigation 
and i t s  integration in fixed-orientation reference axes 

The main object of any navigation System is to determine the exact 
position of a body, i.e., the coordinates of some  point, such a s  the center  
of mass ,  i n  a given f r a m e  of reference.  
coordinates, the pa rame te r s  characterizing the orientation of t h e  moving 
ohject in a given f r ame  of reference,  and the r a t e  of change of these attitude 
parameters  are a l so  of interest  i n  navigation. 

a r e  essentially obtained through integration of Newton's equations of 
motion of the cen te r  of m a s s  of the body. 
force vector applied to the body, which are required for  the integration of 
these equations, are obtained f rom the readings of special  instruments - 
a c c e 1 e r o m  e t e r s, which measu re  the projections of the force on their  
sensit ive axis.  
with gyroscopes or simply determined from accelerometer  readings.  

by definition, i s  the main f r a m e  of reference used in inertial  navigation. 

a point m a s s  m held in a weightless elastic suspension with t h r e e  degrees  
of f reedom in the body of the instrument. 
accelerometer  sensit ive m a s s  in s o m e  inertial f r ame  of reference i s  

The rate of change of these 

A distinctive feature of inertial  navigation i s  that the body coordinates 

The components of the resultant 

The attitude of the accelerometer  sensit ive axis  i s  fixed 

The inertial  (Galilean) coordinate system, where Newton's laws a r e  valid 

A spatial  accelerometel '  (F igu re  1 . I )  can be schematically described as 

The equation of motion of the 

In t h i s  equation r i s  t h e  radius-vector of the point 0 where the accelero-  
me te r  Sensitive m a s s  i s  situated in the inertial f rame;  F ( r )  i s  the geometrical  
sum of the Newtonian attractionon unit sensit ive m a s s  by al l  the celest ia l  
bodies, including the nearby m a s s e s  in the object where the accelerometer  
is mounted; f i s  the elastic deformation force of the suspension. 

For  an obse rve r  in the fixed f r a m e  of the accelerometer  case, the only 
fo rce  on the sensit ive m a s s  is the elastic force of the suspension; the 

I 
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paramete r s  character iz ing this force a r e  the suspension deformations, and 
the acce le romete r  readings actually give the elast ic  deformation of the 

suspension. 
tional to the vector deformation of the 
suspension n ( f - k n )  and putting for  
simplicity m ' k  = 1, we obtain f rom (1  . l )  

Taking the force f propor- 

I 

E o r  an object moving nea r  the Earth,  
Eq. ( 1 . 2 )  can  be writ ten with fai r  accuracy 
in the form': 

Here r i s  the radius-vector of the 
point 0 (where the sensit ive m a s s  is) in 

FIGURE 1.1. the coordinate system O , j q , k ,  whose origin 
is at  the center  of the Ea r th  and the orien- 
tation of i ts  axes  is fixed relative to 

directions from the Ea r th ' s  center  to distant (fixed) s t a r s .  
(1.3) f o r  the gravitational attraction of the Earth.  
is done in the 0,,?,,q,5, system. 
Eq. (1.3) for Eq. (1.2) is associated with the difference in the gravitational 
attraction of the Sun and the Maon at  0, (Ea r th ' s  center)  and 0 (the position 
of the object). 
instrumental  e r r o r  of the accelerometer ,  which i s  a t  most cm/  see2. 

Actual acce le romete r s  are usually one-component devices.  The sensit ive 
m a s s  of a one-component ( l inear)  accelerometer  has only one degree of 

It can move only 

g(r)  stands in 
The differentiation i n (  1.3) 

The main e r r o r  involved in the substitution of 

Nea r  the E a r t h ' s  surface this e r r o r  i s  equivalent to the 

freedom relative to the accelerometer  
body (F igu re  1 .2) .  
along a s t ra ight  line, the s e n s i t i v e 
a x i s  of the accelerometer .  The 
reaction force of the suspension spr ing 
(whose deformation is measured)  is 
applied along this axis.  The reading of 

-11- 
FIGURE 1.2. 

a one-component accelerometer  gives the projection 

n , = n . e .  (1 .4 )  

where e is the unit vector in the direction of the sensit ive axis .  

a r e  c lear ly  equivalent to a single spatial  accelerometer .  

made of a n  elast ic  spring. 
of a different origin, mostly electromagnetic.  This  point, however, is of no 
significance for  the derivation of Eqs.  (1.3), (1.4). 

of this equation is the main task of an autonomous inertial-navigation system. 

See A n d r e e v ,  V .D.  Theory of Inertial Navlgation: Autonomous Systems. - Nauka. 1966. 

Three  one -component accelerometers  with non-coplana r sensit ive axes 

We have s o  far regarded the elast ic  suspension in the acce le romete r  a s  
In practice, accelerometers  utilize e las t ic  forces  

Eq. (1.3) is the fundamental equation of inertial  navigation. Integration 

2 



€ ~ ~ t - n i a l l y ,  the most natural  integration technique cal ls  for the intygration 
o f  E q .  1 . 3 )  in axes  of fixed orientation. Let th ree  l inear  acce lerunie t s rs  
be aiigned along the axes  of a e~- ro~co~) ic .a l l? . - s ta t ) i l i zed  platfur-ni, i1;hich a re  
paral le l  to the axes  E,. q,. 5,. 
projections of tt;e vector rz on the axes  :?. 11, .  ;.: 

T h e  acce le romete r  readings a re  then the 

11.31 ,I. _. : ", - ><.. 0 .  n,,=4,-cmi,. I 
I ,,; : - . r  .. I '..) 

',vt-,c.re super ior  dot deriotps differentiation 1.5. i t h  respec t  to t ime.  
relations we get 

Froni  these 

L,vhere 5:. ,i:, i'! .. q.. ' '  - a r e  the corresponding initial values .  
It' the projections ~ r . , ,  ,cn,, ,L(., are  known functions of the coordinates 

: .  1 1 .  :, , as i s  the case, say,  in a spher ica l  iiFld of gravity, E q s .  ( 1 . 6 )  can  be 
applied to determine the cu r ren t  position :., t),. 

readings of the th ree  acce le romete r s  and the corresponding initial conditions. 
In principle, Eqs.  i L.6i provide the complete solution of the problem of 

inertial navigation. Indeed, a s  the motion of the Ea r th  in the 0,:.11.: f r a m e  
is known, we can  eas i ly  t r ans fo rm f r o m  the Cartesian coordinates :.. 11.. ;, to 
any o ther  sys t em of coordinates f ised to the Ea r th .  The  r a t e  of change of 
any set of coordinates is also readily obtained. 
object in the (1 , :  $ 1 :  f r ame  is determined by i t s  attitude relat ive to the s tab le  
platform (e.g., the  rotation angles of the platformgimbals),  we can  find the 
pa rame te r s  charac te r iz ing  the orientation of the moving object re la t ive to 
any f r ame  fixed to the Ear th .  

Kote that Eqs .  ( 1 . 6 )  specify the coordinates of the point 0 where the 
sensi t ive m a s s e s  of the acce le romete r s  a re .  It i s  these coordinates that 
are henceforth regarded as the coordinates of the object. 

of the object f rom the 

Since the orientation of the 

1 , I  .2 .  
the Earth 

Fundamental  coordinate sys t ems  fixed to 

Consider a right orl.hogona1 trihedron 0,:q; with i t s  or igin a t  the cen te r  

LVith f a i r  accu:-acy(see footnote on p.2) the vector u can  he taken 
of the Ea r th .  
Ear th .  
to point in a fixed direction relat ive to  directions to the dis tant  s t a r ;  it i s  
thus constantly d i rec ted  along the ax is  Of the Ear th ' s  f igure and i t s  magni- 
tude u i s  constant. T h e  axis 0,; of the 
intersection line of the equatorial  plane and the plane of the Greenwich 
meridian.  
coincide with the triht3dron Ol$*q*; a t  the init ial  t ime. 

The  ax is  0,: points along the absolute sp in  vector u of the 

f r a m e  i s  d i rec ted  along the 

Without loss of generality, we can  take the tr ihedron 0,:g to 
Then, a t  any o ther  

3 



titne the relat ive orientation of these axes  i s  specified by the following 
mat r ix  of direction cosines: 

(1.7) 

E r l 5  
5, L O \  u t  -sin ut  0 

cosut  0 11 s i n u t  

:, 0 0 1. 

The Ear th’s  level sur face  (geoid) is adequately approximated to by the 
C‘lairaut ellipsoid of revolution: 

1vhPr-e u and b are the Ea r th ‘ s  semimajor  and semiminor  ax is .  kor the 
Krasovskii’s ellipsoid, in cur ren t  use in the USSR,  we have n = 6,378,245 m, 
b = 6,356,863 m.“  

FIGlIRE 1.3. 

The position of any point 0 in the O,t$ frame can  be determined (F igu re  1.3) 
in t e r m s  of the geographical coordinates 11, q’, il, where  It i s  the length of the 
normal  dropped f rom the point 0 to the Clairaut  ellipsoid (height above ocean 
level), (o’ i s  the geographical latitude ( the  angle between the normal  to  the 
ellipsoid and the equator ia l  plane), h i s  the longitude ( the  angle between the 
plane of the Greenwich mer id ian  and the plane of the mer id ian  through 0). 

The  coordinates E .  u. 5 are re la ted  to the coordinates h. q~‘, h by the 
equalities 

I I * The parameters of ellipsoids used in other countries can be found, say, in G r a u r ,  A.V.  Matematicheskaya 
kartografiya (Mathematical Cartography). - Izd. LGU. Leningrad. 1956. 
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where e :  is the square of the first eccentricity of the Clairaut ellipsoid, 

i \ ' i th the. point 0 ire associate a right orthogonal tr ihedron O.r!y;:,, the 
co-mvvitig axes  o f  the 7eograr3hical coordinate g r id  (see F igure  1 .3) .  T h e  
asis zI I J ~  this  tr ihedron is directed along the posititre normal to the Clairaut 
cllipsoid, the as i s  yI l k s  in  the meridional p l a n e  through 0 pointing north- 
~.~:~it.d, The  relat ive attitude o f  the t b r ' o  t r ihedra  211; and x,y,z, is charac te r ized  
by the following matr ix  of direction cosines:  

.v 1 

i 1 . 1 0 )  

f 0 cosq' sin q f .  

The planes xlzI and yIzI  a r e  the planes of the principal normal  sec t ions  of 
the sur face  h = const .  The  corresponding rad i i  of curva ture  a re  given by 

(1.11) 

On a p a r  with geographical coordinates, we can  u s e  the geocentric 
coordinates to define tt-e position of the point 0: the geocentric coordinates 

FIGURE 1.4. 

include the distance r of the point 0 f r o m  the Ear th ' s  cen te r  0,, the geo- 
centric latitude v ,  and the longitude X .  In this case (F igu re  1.4) 

I ; = r cosq  cos)., q = r cos$ s ink ,  
f =  r sinT. 

(1.12) 

5 



Ch. 1. ELEMENTS OF THE THEORY OF AUTOKOMOUS SYSTEMS 

The geocentric latitude coincides with the eeoerauhical latitude. The 
- 0  V U I  

re lat ion between the geographical coordinates h ,  cp' and the geocentric 
coordinates r and 'p i s  obtained by comparing (1.8a) and (1.12) ( see  footnote 
on p. 2): 

] tgcp', t g v = p  - a + h ( l - e z s l n z ' p ' ) ' h  
a62 

sln 'p' 
(1 .13)  

We introduce the co-moving t r ihedron Ox2y2z2 associated with the geo- 
centr ic  coordinate gr id  (F igure  1.4); i ts  axis z2 i s  directed along the radius-  
vector of the point r ,  and the axis y2 l i es  in the meridional plane through 0 
pointing northward. The mat r ix  of the direct ioncosines  which charac te r izes  
the orientation of the trihedron xzy2z2 re lat ive to the trihedron &qC is c lear ly  
obtained from matr ix  (1 . l o )  by writing cp for  9'. The relat ive orientation of 
the geographical and the geocentric co-moving axes is determined by 
the following direction cosines: 

Yz 

(I .14) 
z1 0 sin(cp'-qJ) cos(cp'-cp), 

and, by the f i r s t  equality in (1.13), I 

Apart f rom the geocentric coordinates t, cp. A,  one often uses  the so- 
called o r t h o d r o m i c  c o o r d i n a t e s  (a l so  spherical) .  They can be 
defined in the following way. 
the Earth,  so  that i ts  orientation relative to the trihedron 0 , ~ q ~  does not 
change. Let the relative orientation of these axes be  expressed by the 
mat r ix  of direction cosines 

Consider a t r ihedron O1&*q'6', rigidly fixed to 

E' tll 6' 
& 811 b12 813 

q 821 b22 823 

831 bS 833' 

(1 .16)  

where all the elements a r e  constant. 

the coordinates r ,  I, S, which a r e  analogous to the geocentric coordinates 
r ,  rp, X ,  so that (F igure  1.5) 

The position of the point 0 relative to O1&'q '~  axes can be determined using 

E' = r cos z C O S S ,  = r cos z s i n s .  1 f i  i ' 7 \  

6 



FIGURE 1.5. 

The  relation between cr. i. and S ,  t follows f rom the equalities 

1 
s r n y  = f i l l  cos z co5.s +p,: cI,s z s i n s  + p L , s i n z .  J 

cosq cos i = p l I  cos z C O S S  +fir.. cos  z siris + P I  , s in  z.  
cosy s i n 2 . = f i ~ , c o s z c ~ ~ s S ~ ~ ~ ? c o s z s i n . ~ - t ( . , , ~ s i n  z ,  (1.18) 

In or thodromic coordinates the equivalent of the equatorial plane i s  the 
plane 0,:’q’ ( the plane of principal or thodromy).  
iq: coincide, or thodromic coordinates reduce to geocentric coordinates. 

dinate gr id .  I ts  ax is  z3 coincides with r and the axis  y, l i es  in the plane 
through r and the a x s  c, pointing in the direction of the (’ axis .  The  
relat ive orientation of the t r ihedra  x2y2z2 and x3y3z3 i s  then given by the 
following m a t r i x  of direct ion cosines: 

lVhen the t r ihedra  z’q’; and 

L V e  now introduce the co-moving t r ihedron Ox3y3z3 of the geocentric coor-  

x3 Y3 t 3  
x2 c o s @  sing 0 
y2 -sing cos@ 0 
2 2  0 0 1, 

(1.19) 

where 
1 

1 
<o,v 

sin 11 = TG (p,, sin S - pu cos S), 

cos $ = 7- (- pal s in  z cos S - pA2 sin z sin S +&, cos z). (1.20) 

1 .1.3. The gravitati3nal f ield of the Ea r th  

The  projections of the vector  g ( r )  - the regular ized gravitational accele- 
rat ion of the Ea r th  - on the axes 5 .  % C are obtained f rom the solution of the 
Stokes problem for a. spheroidal  level surface.  They have the form” 

h l i  k h a i l o v ,  A.A. Kurs gravimetrii L teorii figury Zemh (A Course in Gravimetry and the Theory of the 
Earth’s Figure). - kdbyum GUGK. SNK SSSR. 1939; 
of the Earth’s Figure). - Fizmatgiz. 1963. 

G r u s h  L n s  k I L ,  P .P .  Teonya figury Zemh (Theory 
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Ch. 1. ELEMENTS OF T H E  THEORY OF AUTONOhlOUS SYSTEhIS I 

I gt = - P i + C z ,  dK g, = - Pq +c-, "1 
dK fi;' - Q ; + C y .  

Here  

(1.21) 

(1  2 2 )  

where 1' is the second eccentr ic i ty  of the ellipsoid through point 0 which i s  
confocal with the Clairaut  ellipsoid and i s  descr ibed by the equation 

Thus 

(1.24) 

The constants Dp and C entering Eqs .  (1  .21), (1 .22 )  are obtained f rom the 
conditions 

g, = 2CnDpa + P,a - u2a. 

UZ 

2q = arctg 1 - 7 ,  (1  2 5 )  

where 12=(a2-b2)lb2 is the second eccentr ic i ty  of the Clairaut  ellipsoid, g, i s  
the gravitqtional accelerat ion on the equator, Po i s  the value of P on the 
sur face  of the Clairaut  ellipsoid. 

expressions for the projections of the gravitational accelerat ion on the co- 
moving geocentric axes: 

F r o m  Eqs .  (1 .21 ) ,  (1.22), (1.12) and mat r ix  (1.10) we obtain the following 

g, = 0. 
azbr g = 2nDpsincpcoscp [ (,?-bZ)'/) 

(3 arctgl'- -- Y t  

(1.26) 

I 

Using (1.23)-( 1.25). we expand the right-hand s ides  of Eqs. (1.26) in 
rapidly converging series" in powers of the f i r s t  eccentrikity of the 

* A n d r e e v ,  V.D. A solution of the Stokes problem for a geoid level surface.-fiikladnaya Marematika i 
Mekhanika, Vol. 30, No. 2. 1966. 
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c'lairaut ell ipsoid e =- \ iu -  - b2flu2: 

( 1.27) 

where q i s  the r a t i o  of the centrifugal accelerat ion to the gravitational 
acce lera t ion  at the equator ,  q=u 'a  g,. 

The  numer ica l  values  of the coefficients in  Eqs .  (1.27) show that, to a n  
accuracy  of about 0.C2 cm/sec2,  these  express ions  c a n  b e  replaced by the 
s impler  formulas  

g = 4 ( 9 - - - e ' ) j T )  1 1 1  sin21,r. 

g,: = - g e ( , - )  ' I  [ I  - y e 2 + y q  1 3  + 
h * 

(- I + 3 

Taking ge =978.04 '3cm/sec2,  II =7.292116sec-',  we obtain using 
Krasovski i ' s  el l ipsoid pa rame te r s  ( e' = 0.0066934) 

( 1.28) 

(1.29) 

Eqs .  (1.27), (1.28) give the projections of g ( r ) o n  the co-movinggeocentric 
axes  as a function of the geocentr ic  lati tude (p and the dis tance r from the 
Ear th ' s  cen ter .  
the geographical axes  as a function of the geographical lati tude q' and the 
dis tance h f r o m  the s u r f a c e  of the Cla i rau t  ell ipsoid (height above ocean  
level). 

We will  
cons ider  only the case of small h ,  when the r a t io  h a is of the order e? , i.e., 
when h a l 0 0 k m .  Using (1.13), we find 

F r o m  these  relat ions we c a n  find the projections gy,, g2, on 

In Eqs .  (1.27) w e  row change over from r and ([ to h and q'. 
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(1.31) 

For  h=O, Eqs. (1.31) give the projections gv,, g,,on the Ea r th ' s  surface 
(on the surface of the level ellipsoid). 
tions of the centrifugal acceleration due to the Ea r th ' s  spin the first sum 
vanishes, and the second leads to the Helmert-Cassinis expression for  the 
normal  force of gravity:':' 

If w e  now add the yI and zI projec- 

g =g,(l +Ps in?cp '+~ , s in ' 2~~ ' ) .  (1.32) 

where the coefficients p and pi a r e  expressed in the standard Clairaut form 
with second o r d e r  terms:  

p = - q - a - - - L I -  5 
2 14 gas 
u2 5 a - b  f J I = ~ - - 8 9 a .  a=-. 

1.1.4. 
measuring the Cartesian coordinates of the object 

Ideal operation equations of inertial  sys t ems  

Consider an inertial  navigation system comprising three accelerometers  
which a r e  mounted on the platform of a three-degree absolute angular 
velocitymeter.*<*< The i r  sensit ive axes point along the axes of a right ortho- 
gonal sys t em O x y r  fixed to the platform (F igure  1 .6) .  

FIGURE 1.6. 

* See footnote on p. 7. 
**  A n d r e e v ,  V . D .  Theory of Inertial Navigation: Autonomous Systems. - Nauka. 1966. 

I 
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L+t thr iner t ia l  s y j t e m  m e a s u r e  the Car t e s i an  coordinates E. qq : in a 
t'v:init-* 0,:q: fised to the Earth,  the r a t e s  of change of these  coordinates i.>i, f, 
:itid the C,t'ietitation pa rame te r s  of the object re la t ive to the ases :, 11. ;. 
n , ,  t i y .  r r z  be the accel-rometer  readings, ut,t ,  my, mz the readings o f  the 
n t > s o l u t e  angular velocity m e t e r s .  

Let 

L V e  introduce the vec tors  

f 1.33) 

..*:hc$rr O) is the7 absolute angular x-elocity of the platform, i . e . ,  of the ases  
Oxy:, and x. y+ z a r e  t.ie unit vectors along these  ases .  

<' inter O:, ana axes  p, i ra l le l  to the corresponding axes  of the O S ~ Z  sys t em.  
c ' lea r IF-, 

!\'e tnrrwllice a Coordinate sys t em 0,s)~~ x i th  i t s  origin at the Ear th ' s  

r = :t .: +- 1111 -L g j  = .rx f yy f zz. (1.34) 

L\.riting v=dr  <it, we find 

(1.35) 

::.here dot denotes differentiation in the coordinate sys t em o , . ~ p :  . 
Integration in the 3,xp: f r a m e  gives from Eqs .  ( 1 . 3 ) ,  (1 .35) ,  (1 .35)  

r 

1 

v =  I ( n - m ; ; . : v f g ) d f i v ~ ,  

( 1.36) 

Eqs.  ( 1.36) specify the coordinates of the object in the 0,xyz f rame,  if 
the projections g , .  ci. ,g; are  known (e.g., if the Ea r th ' s  gravitational field 
is spherical) .  

To find the coord i ra tes  i . q . 5  of the object, note that the tr ihedron O , . V ~ Z  
ro ta tes  re la t ive to the t r ihedron  O.;q; with angular velocity 

o) - u = m  - u. (1 .37)  

where u is the vector absolute angular velocity of the Ea r th ' s  rotation. 
I f  the  initial re la t ive orientation of the t r ihedra  0,xpz and O,;G i s  known, 

the i r  re la t ive orientation at any t ime (for given vector angular velocity 
f 1.37)) r educes  to a solution of s tandard  Poisson ' s  equations 

= ( b X (m - a) dt + go, 
1; 

(1.38) 



Ch. 1 .  E L E h l E N T S  OF ? t l E  1 HEOKY Of A U T O N O M O U S  SYSTEhiS 

Now 

and the problem of determination of the coordinates ;, q, ; has been solved. 
The velocities i. i. j a r e  found in an obvious manner .  

tion relative to the Oxpz axes,  SO that one either has  to determine the 
attitude of the tr ihedron Oxyz  relative to the object o r  measu re  t h e  angular 
velocity of rotation of 0 x ) ~  relative to the object and then solve a set of 
equations analogous to Eqs. (1.38).  If the angular velocimeter platform i s  
rigidly fixed to the object, the orientation of the object i s  found directly 
f rom Eqs.  (1.38). 
known if the spatial  orientation of the sensit ive elements of the inertial  
navigation system has been determined. 

The orientation of an object in space is specified in t e r m s  of i ts  orienta- 

In what follows the orientation of the object i s  considered 

In a spherical  gravitational field 

g( r )  = - Ll r 3  g. ( r )  

Eqs. (1.36) and (1.38) a r e  solved independently. In fact, however, 

g z g r a d v ,  V=”+ &(E. 9. 5) ,  (1.40) 

where e ( E ,  q, L)  i s  the force function of the sma l l  nonspherical component of 
the gravitational field. 
should solve Eqs, (1.38) and then find the simultaneous solution of Eqs. (1.36),  
(1.39) and (1.40). 

Note that in the derivation of Eqs. (1.36), (1.38) -( 1.40) we allowed a n  
a rb i t r a ry  orientation of the angular velocimeter platform (the Oxpz axes) 
both relative to the Earth and relative to the object. Various particular 
c a s e s  should be considered at  this point. 

The O X ~ Z  axes may have a fixed attitude in the inertial  space (e.g.* coin- 
ciding with the O%,q+g, axes) .  
stabilized platform o r  by hooking up the accelerometers  to free gyroscopes.  
Eqs.  (1.36) then reduce to Eqs. (1.6), and Eqs.  (1.38) drop out. 

the object. 
(1.38) -(1.40) retain their  fo rm.  

There is also an intermediate case,  when the orientation of the Oxyz  
f rame,  with the accelerometers  aligned along i ts  axes, is a known function 
of t ime and coordinates being measured. This is achieved either by a 
controlled gyroframe (or a controlled gyroscopically-stabilized platform) o r  
by a special  kinematic arrangement mounted on a stabilized platform o r  
connected to f r ee  gyroscopes.  

The orientation of the Oxyz axes is a known function of t ime if their  
attitude relative to the Ea r th  is fixed (e.g., the axes n, y, z and E ,  q, 6 coincide). 
Wben a gyroscopically-stabilized platform is used, the accelerometer  axes 
should rotate relative to the platform in accordance with the matr ix  of 
direction cosines (1.7) .  If, on the other hand, a controlled gyroframe is 
used, the control torques M:, .ML, Mi are defined by the equalities 

Therefore ,  before g,, g,. g, can be determined we 

This can be achieved using a gyroscopically- 

Alternatively, the angular velocimeter platform may be rigidly fixed to 
Since the orientation of the object i s  quite arbi t rary,  Eqs. (1.36), 

M: =o. M:= 0, M:=-HP. (1.41) 
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which follow f r o m  t h t  precession equations of the gyroframe: 

,If: = - ti:c.b, .\I: = H , w , ,  .11, = - f f , o j ; .  ( 1 . 4 2 )  

Eqs.  ( 1.38), (1.39) d rop  out, s ince  the coordinates $, 11,  :: immediate!y 
f ~ , l l o i v  f r o m  i 1.36) in this ca se .  

A s  an  example in ..vhich the orientation of the Oxy: axes  i s  a function of 
the coordinates being measured  by the iner t ia l  system, cons ider  th? case 
\ rhrn the ax is  z points constantly along the radius-vector r ,  Then 

and hence 

ii, = r<,bY, z',, = - raL>r, :lz = r .  \ 1 .44) 

The control torques are thus 

i' , 
. \ I  = tf: 2, .\I: = t iI  7 - ,  .\I, == - H m,. (1 .45)  

In E q s .  (1.36), (1.38) we should take s = y = O .  z = r .  m , = - c ~ , , r .  t , ~ , , = : * , ~ ' r ,  
VI.. and .\I: are  quite a rb i t r a ry .  
simplify the equations, e.g. ,  

Th i s  torque can  therefore be choser; so as  to 

1 . I  .5 .  Determination of curv i l inear  coordinates 

.A useful technique i s  to replace the coordinates OI:.i1:, and 0,;t); with 
homogeneous coord i ra tes  Ol;1:2;3 and olv':i%l. Let the position of the object o 
in the coordinate sys t em Ol;'f':3 be specified by s o m e  curvil inear,  in genera l  
non-orthogonal and non-stationary coordinates X I ,  +, x 3 ,  so  that 

(1.17) 

H e r e  and in  what follows 

. -  - ; ' tx: ,  z l .  x'j. t ) ,  r = :'E , 
- 5  

ivhere gc are  the unit Vectors along the a x e s  f ' .  
summation from 1 to 3 o v e r  repeating indices i s  implied. 
indices take on the values 1, 2, 3 .  

T h e  non-repeating 

Let the Jacobian 

( 1  -48) 

The iner t ia l  s y s t e m  measuring the coordinates X I .  x z ,  x7  i s  schematically 
described as follows. 
(without loss of general i ty)  can  be taken to point along the :' axes of the 
sys t em 0,;lb'fJ ( O I & q + ~ , ~ .  
platform; the unit vec tors  of the i r  sensitive axes  are e, and the accelero- 
m e t e r  readings are n g p .  
given dependence of the orientations of the unit vec tors  e, on'the t ime t and 

It compr i se s  a gyrostabilized platform whose a x e s  

T h r e e  a C C e k ~ o m e t e r s  are mounted on the s tabi l ized 

The  kinematic sys t em i s  such  that it e n s u r e s  a 



Ch. I .  E I . E M E N l b  OF 1 H E  1HEOKY Ut AVlONOMCWS S Y S l F - M S  

the coordinates x? measured by the inertial  system: 

e ,  = e , ( x ' .  x?,  x3. t ) .  (1 .49)  

The vectors  e, a r e  not coplanar.  
Let us expres s  neS in t e r m s  of the coordinates z k .  W e  introduce the 

covariant (fundamental) base vectors" 

(1.50) t7r  
r ,  = - ~~, I r =  :'Fa. 

Because of (1.48), the vectors r s  a r e  not coplanar.  We also introduce the 
contravariant base vectors r* and a metr ic  tensor A in the curvil inear 
coordinate space X I .  The covariant, contravariant,  and mixed components 

tensor will b e  designated a c k ,  a s k ' ,  and a:, respectively.  
m (1.3), (1.4),  and (1.40) we now have 

Here rm; a r e  the Christoffel symbols of the second kind, expressed in 
t e r m s  of the components of the me t r i c  tensor A; ro; and r& a r e  three-index 
symbols defined by 

(1.52) 

grad'V and qf are the contravariant components of the vectors g = grad  V and q, 
in the fundamental base, and e, ,  a r e  the covariant components of the vectors  
e*. 

variant base vectors  r S .  "<* Then 
W e  will r e s t r i c t  the discussion to the case  when e, a r e  along the contra- 

(1.53) r s  . 1 
e, = p, eSA = 0 for  s # k; e,, = - w .  

Using Eqs. (1.51) and (1.53), we write the f i r s t  group of ideal operation I equations of an iner t ia l  system in the form** (no summation overs!): I 

Eqs.  (1.54) and (1.53) should be supplemented by equations for  $ and 

We have 
expressions specifying ql and x s  a s  a function of t ime. 

qk = a:k'. qt = a& (1.55) 

* See, e . g . ,  L u  r ' e ,  A.1 Analltlcheskaya mekhanlka (Analytical Mechanlcr). - Flzmatglz 1161. 
'* The general case- IS considered in "Theory of Inertial Navigation: Autonomous Systems." Nauka. 1966. 
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5 1.1. IDEAL OPERATION EQUATIONS 

where a! are the direction cosines  between the axes 
F r o m  the second equality in (1.55) we get 

and q’ (ma t r ix  (1  .?)). 

(1.56) 

Using the definitic’n of ~j and the obvious equality r=q4qk, w e  obtain 

The direction cosi.nes of the vectors  e, in reIation to the axes  of the stable 
platform a r e  

(1.58) r s .  E a  e, . g, = - )T- 

Consider a par t icular  c a s e  of Eqs.  (1.54) -(1.58)* when X I ,  9. X ?  a r e  
orthogonal coordinates.  In this case,  the fundamental base vectors  a r e  
perpendicular to one another.  
the fundamental base vectors .  
diagonal e lements  a r e  expressed in t e r m s  of the Lam6 coefficients h,: 

The contravariant base vectors  point along 
The me t r i c  tensor  i s  thus diagonal, and i ts  

F o r  orthogonal coordinates,  the only nonvanishing Christoffel symbols  
I?,, a r e  e i ther  those with k = m  o r  those with n=m. Moreover,  

(1.60) I d 
dt - ~n \5F = - - r& 

‘Ok, I = - ‘0s. k’ 

Eqs. (1.54) are t h i s  rewri t ten in the fo rm (no summation over  s!) 

t 

h$== ( r z e , - h s [ r ~ ~ k s +  rk:kRk’+rk;(;k)2+ 
0 

+ 2ro;kR f r$ - grad ‘ v ~ J ]  dt  + h, (0) 2 (o), I (1.61) 

1 
x5 == i (h,&, dt + x s  (o), 

0’ 

where the sum is ove r  all k #  s. 
Eqs.  (1.61) replace Eqs.  (1.54) in the c a s e  of orthogonal coordinates.  

Eqs.  (1.55), (1.57) r ema in  valid, and Eqs.  (1.58), (1.56) a r e  replaced by 

(1.62) 

In the c a s e  of orthogonal curvi, inear coordinates xS, the kinematic system 
may clear ly  employ a controlled gyroframe, s ince the directions r“ (or  equi- 
valently r,) fo rm a rigid tr ihedron which, in particular,  may be made to 
coincide with the gyroframe platform axes. 

15 
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To form the control torques (1.42), w e  require  the projections qr) of the 
absolute angular velocity o of the trihedron r1r2r1 on the directions of the 
base vectors.  The corresponding expressions a re*  

where 
The sum i s  only over  n . A s  

w e  have noted before, the only nonvanishing Christoffel symbols in the case  
of orthogonal coordinates a r e  those with k = m  or n = m  . The Levi-Civita 
symbols a r e  E'"'= t I/h,h,h,, where the sign is determined by the o rde r  of 
the indices s, n ,  k .  Using Eqs .  (1.59), we obtain from (1.63) (taking s n k =  123, 
231,  312) 

a r e  Christoffel symbols of the f i r s t  kind. 
The indices s and k in (1.63) a r e  different. 

(1.64) 

If the coordinates ns determine the position of the object in the O,qlq2~3 axes  
fixed to the Earth,  they a r e  stationary relative to the Earth,  so  that 

qs = qs (nl, n2, x3) (1.65) 

and by ma t r ix  (1.7) 

E' = 0' cos ut - 0 2  sin u t ,  

E2 = 0' sin ut + q 2  cos ut ,  
5 3  = tl". 

(1.66) 

In this case,  when calculating the metr ic  tensor elements, the Lam6 
coefficients, and the Christoffel symbols, we may take t = O ,  since the 
coordinate gr id  n1x2n3 moves (rotates with angular velocity o) as one whole and 
the properties of the space described by the curvil inear coordinates x l ,  nz, n3 are 
independent of t ime. F o r  I'o,,, and r,,,, using Eqs.  (1.52), (1.65), and (1.66), 
we also obtain time-independent expressions in this case: 

(1.67) 

One fur ther  point deserves  special  mention. In the case  of curvil inear 
orthogonal coordinates, the f i rs t  three equations of (1.61) can be replaced 
by the f i r s t  vector equation in (1.36). 
directions r2, r3. r , ,  we get 

Projecting this equation on the 

* And ree v,  V . D .  Uaperturbed operation equations of an inertial system measuring curvilinear coordinates. - 
Prikladnaya Matematika i Mekhanika, Vo!. 29, No. 5. 1965. 
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( 1 . 6 8 )  

whence 

! 1 .69)  

These  equations c a n  rep lace  the las t  th ree  equations in ( 1 . 6 1 ) .  
Using the definitio.1 of the contravariant \'ectors and Eqs .  ( 1 . 6 5 ) ,  ( 1 . 6 6 1 ,  

we get 

Note that if Eqs .  (1 .  . 6 3 ) ,  (1 .68)  are  inserted for (,) ,,,, vIp, in (1 .67a) ,  s imple 
manipulations lead to the f i r s t  t h r ee  equations in (1 .69) .  

1 . I  . 6 .  
geocentric, and geographical coordinates 

The  ideal operation equations in orthodromic,  

The  orthodromic coordinates r .  S.  2 are  defined by Eqs. ( 1 ,171 and tlle 
matr ix  of direction cos ines  t 1 .16 ) .  If u e  take .ri - r ,  z ? - S ,  . A j -  - _  - , ive obtain 
for the Lam& coefficients 

h, = 1 ,  h? = r cos z ,  h, = r .  

Lrsing (1 .70 ) ,  (1.71) and ma t r ix  (1.16), we get 

% . f l  = 0 ,  

-. r'=+ip , c o s r - ~ , ? s i n ~ s t n ~ - - p , , s i n z s o s ~ ~ .  

Ot 

d r  
LU,  z 

.re=i i (pl l  s i r i ~ - f i ~ ~ c o s ~ ) .  ut 

( 1 . 7 1 )  

(1 .72 )  

T h e  s tandard  expressions"' fo r  the nonvanishing Christoffel  symbols in 
t e r m s  of the Lam& coefficients give 

( 1 . 7 3 )  



(:ti. 1. ELEXIENTS OF THE THEORY OF AUTONOMOUS SYSTEhlS 

According to (1.17), (1.67) and ma t r ix  (1.16), the following symbols are 
a l so  different f rom zero: 

r,,,=-ruL[i -~pJIcoszcosS+p,~coszsinS+p,sinz)2], 

rw, = r2u? cos z cos z cos S + p3? cos z sin S + 
+P1lsiiiz)(-pl, s inS+pscosS) ,  

I'm,,=r?u?(p31 cos z c ~ s S ~ ~ ~ c o s z s i n S + p , , s i n  z ) X  
~ ( - ~ P 3 1 s i n ~ ~ o ~ S - ~ ~ ~ ~ i n ~ ~ i n S + ~ 3 ~ ~ ~ ~ ~ ) r  

l?ol,2 = - ro2,1 = ru  COS z (- 1jJ1 sin z cosS-fl,sin z s i n s  + f 1 3 3 ~ ~ s ~ ) ,  

rol, = - 
re>, = - Po,,,? = r2u COS z (p31 COS z COS S + pO2 cos z sin S + pT) sin 2). 

I = rli (p31 sin S - p3* cos S) ,  

Now, using Eqs .  (1.52), (1.71), and (1.59), we get 

1 ro6 = rfN,, I, r,; = - r,, 2, r,; = f roo,?, 
r ?  I 

o l =  mr01.2. r,: =&rul,3. 
rut = - rol. 2 ,  rcl; = - r2, 
ro: = rv2, :,, r,,j = - - r :  rm.3. 1 I 

For  the projections a,<) we have f rom (1.64), (1.71), (1.73), and (1.74): 

o,,) = S s i i i  z + u (p31 cos z coss  + P ~ ~ C O S  z s i n s  +pJ:sin z) .  

('It2) = - z - / I  (pJI b l l l  s - pJ2 COSS), 

w ( , ~ )  = S cus z + u (-- p31 sin z cos s - p3? sin z sin S + p3] cos z). 

(1.76) 

The projections o,,) are obtained f rom (1.68), (1.71), (1.72), and (1.76): 

VI,)  = r ,  o(2) = r q 3 ) ,  ' ~ 1 , ~ )  = - r q 2 ) .  (1.77) 

Comparison of the f i r s t  and third express ions  in (1.76) gives  a fur ther  
equality 

all) = OI3) fg + & (831 COS s + 832 sin SI. (1.78) 

Let u s  find the projections g,,,. The vec tors  r2. r3. r ,  are directed in the 
present c a s e  along the axes  of the co-moving orthodromic t r ihedron Ox,,p,z,, 
defined in 1.1.2. Therefore ,  

g,,) = Ez ,*  o"(?, = E&> g13, = gy; (1.79) 

or ,  using (1.19), (1.20), 

(1.80) 

&) = ETz2 ( r .  (P), 
I 

1 

g(2) = gy, ( r *  Cosp (- 831 sin + 832 'Os '), 

g = g ( r ,  cp) -(- pal sin z cosS - (3) Y, cos 'p 
sin z sin S +flu cos z), 

where g y l ( r ,  9). g,,(r, cp) a r e  expressed  by (1.26) o r  (1.27). 
latitude cp enter ing these  equalities i s  expres sed  in  t e r m s  of z and S by the 
th i rd  equation i n  (1.18) 

The geocentr ic  

(1.74) 

(1.75) 
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Turning to Eqs.  (1.67), (1.69) and using t h e  above intermediate relations,  
we obtain the followin% ideal operation equations for  a n  iner t ia l  navigation 
system which m e a s u r f s  orthodromic coordinates and u s e s  a controlled 

(1.81) 

The subsc r ip t s  2,3, 1 have been consistently replaced by XI, y3, z 3 ,  i.e., 
the notation of the co-moving geocentric axes .  
inertial  sys t em corresponding to ideal operation equations (1.81) is shown in 
Figure 1.7. 

expressions for  the control torques hi:. .td. ,CJ: are omitted f rom Eqs.  (1.81) 
and a ma t r ix  of the di:rection cosines  between the axes x3, y3, 2% and the axes  
E l ,  k2. E3 of the stabil ized platform i s  added. 
obtained ei ther  from the f i r s t  group of relations in (1.62) o r  direct ly  f rom 
the definition of the t r ihedron Ox,p,z,. 

with Eqs .  (1.61), seeing that 

A block diagram of the 

If the iner t ia l  sys t em u s e s  a gyroscopically-stabilized platform, the 

These  direction cosines  are 

Eqs.  (1.81) were  obtained using Eqs.  (1.67), (1.69). They can be replaced 

(1.82) 

Eqs.  (1.81) for orthodromic coordinates give a s  a par t icular  case the 
ideal work equations in geocentric coordinates.  
replaced with q and >., putting p i i = l ,  p r j = O  for i + j ,  and replacing the 

To this end, z and S a r e  
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subscr ip ts  x3, y3, zR with the subscr ip ts  x2,  y2, z 2 ,  in accordance with the 
notation of the geocentric co-moving axes introduced in 1.1.2. 

Initial Computer 
conditions unit 

FIGURE 1.7 

Let  u s  now derive the ideal operation equations for  the geographical coordi- 

~ 3 = ( p ' ,  we find the corresponding Lam6 coefficients: 
nates .  The geographical coordinates are defined by Eqs. (1.8a).  Taking 
x~ -.h, 

I h, = 1, 

h -  4- h )  cos 9'. (1.83) 

3ae2 (1 - e') hs sln rp' cos rp' 
(1 - el sin2 'p')*'* 

' ra. = 

(1.84) 

(1.85) 
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According to E q s .  1.52),  ( 1.59), ( 1  . 8 3 ) ,  and (1.67),  o ther  Christoffel 
symbols  w h i c h  a r e  different f rom z e r o  include 

The  projections $++,, of the absolute angular velocity of the  t r ihedron  r , r2 r .  
r jn  i t s  axes  a r e  obtained using E q s .  (1.641, (1 .83) ,  (1.85), and (1.86): 

t.'rom (1 .68 ) ,  (1 .84 ) ,  and 1.87),  we fur ther  have 

1.88) 

\vhere r ; .  r l  a r e  the rxdi i  of cu rva tu re  (1 .11)  of the  principal normal  sec t ions  
o f  the  su r face  h = cons t .  

Comparison of the  f i r s t  and th i rd  re la t ions  in  ( I  .87) gives  

I t  now rema ins  to find the projections g,,,, g,?,, g,?, of the Ea r th ' s  g rav i ta -  
tional field which ente r the integrands in  (1.67a). 
exp res sed  by expansion ( 1.27), we have, using the m a t r i x  of direction 
cos ines  ( 1.14), 

If the  gravitational f ield is 

(1.90) 
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Now, using Eqs.  (1.67a), (1.69), we obtain the ideal operation equations 
of an inertial  navigation system which measu res  the geographic coordinates: 

(1.91) 

In Eqs.  (1.91) the subscr ipts  x , ,  y , ,  z ,  correspond to the notation of the 

These variables are found from (1.13) and (1.15;. 
geographical co-moving axes introduced in 1.1.2.  
(1.91) contain ‘p and r .  

The last  two relations in 

5 1.2.  
INERTIAL NAVIGATION SYSTEMS 

THE EQUATIONS OF ERRORS FOR 

1.2.1.  Per turbed inertial  sys t ems .  Main 
instrumental  e r r o r s  

The ideal operation equations of the previous section only descr ibe the 
operation of an inertial  navigation system with ideal elements and devices 
(without instrumental  e r r o r s ) ,  when the initial conditions of system operation 
exactly correspond to the initial conditions of motion of the object. 

In real sys t ems  these requirements  a r e  satisfied only to some approxima- 
tion. The ideal operation equations no longer descr ibe the actual operation of 
the system, and the navigation pa rame te r s  are determined by a system with 
errors. We are thus dealing with perturbed operation of a navigation 
system. 

an inertial  system f rom their  values corresponding to the ideal operation 
The equations fo r  the deviations of the variables describing the s ta te  of 

5444 
22 



+qriatitrns 3.t.ill h e  i , e fe i , i , ec l  t o  as the e q u a t i o n s  o f  e r r o r s .  These  
q u a t i o n s  determine the functional stability of the systeni  a s  a whole. They 
5 I sc i  prrjvide a relation between the instrumental  errors and the inaccuracies 
[ t i  ttit; initial ccJnditions, on the one hand, and the errors  of determination 

1 ) t '  the navigation parameters ,  on the o ther .  
q u a t i o r i s  thus largely determine the functional precision of the inertial 
.<yx t m . 

tjy t i i i  s y s t em cha rac t e r  s t i c s  if the des i red  accuracy i s  to be attained or 
+-,stablish the accuracy with which the navigation pa rame te r s  are determined 
1))- a sys t em irith given charac te r i s t ics .  Analysis of the equations of errors 
fur ther  enables us  to  approach the selection of a functional algorithm of the 
intbrti:il sys t em.  L\.ithout analyzing these  equations, we can  never  decide on 
tht; applicability of various simplified f o r m s  of the ideal operationequations.  
€.'inally, investigation of the proper t ies  of the error  equations i s  essent ia l  
f o r  choosing cor rec t ion  kchniques and evaluating their  re la t ive efficiencies. 

i-,Icnicnts and devices.  EIach of these components introduces a cer ta in  error  
t o  sys t i t n  operation. OLr aim, however, i s  not to wr i te  error equations for 
:is itiatty individual elemc-.nts a s  possible. 
t,t.,duce the errors of the various components to a limited number of most  
typical and charac te r i s t ic  errors. 

The  principal charac te r i s t ic  instrumental  errors  in  iner t ia l  navigation 
s y s t e m s  a re  the e r ro r s  o f  i t s  sensi t ive elements  - the acce le romete r s  and 
gyroscopes.  In s y s t e m s  of constant s t ruc ture ,  the errors of all o ther  
e lements  and devices c lear ly  can  be reduced to s o m e  equivalent errors in 
p r imary  input informaticn, i.e., errors of the sensi t ive elements  of the 
j s t c m .  

T h e  proper t ies  of the e r ro r  

Iiy scclvttig t h e  equations of e r r o r s ,  u e  find the requirements  to be met 

Any iner t ia l  navigation sys t em generally contains a g rea t  number of 

Conversely, the best  policy is to 

I . 2 . 2 .  Position error equations 

The  error  equations cf a n  iner t ia l  sys t em measuring the Car tes ian  
cricrdinates of a n  object ''a sys t em of this  kind was considered in 1 . 1 . 4 )  are 
obtained by varying the ideal operation equations (1.36), (1.38)-( 1.40). Th i s  
g ives  the following s e t  of vector equations:': 

(1.92) 

( 1 . 9 3 )  

6r ,  = 0 X r .  6r2 = &r + A t - , ,  (1.91) 

ivhere ~n and Am a r e  the vector instrumental  errors of the acce le romete r s  
and the gyroscopes,  hr, is the vector total  error  in  the position of the object 

. i n  d r e e v ,  V.D.  General equatioiis of menia l  navigation. - Prikiadnaya Uatematika I XLekhanika. Vol. 2 5 .  
No.2.  1964. A n d r e e v ,  L'.D. Theory of Inerrtat Kavigation: Autonomous System. - Nauka. 1366. 



i n  the axes  0,511;. 
to the fundamental Cartcslan axes 0,k.i1,&. 

velocity (9) ( these axes niay be fixed to the stabilized platform, say),  we 

The derivatives in Eqs.  ( 1 . 9 2 )  and (1 .93 )  a r e  w i t h  respect  

Projecting Eqs.  ( 1 . 9 2 ) - (  1 .Y4) onto the x y r  axes which rotate w i t h  angular 

- 
nhtsin 

The e r ror  equations of inertial  sys t ems  measuring general  curvi l inear  
coordinates a r e  a lso obtained by varying the corresponding ideal operation 
equations. If the sys t em acce le romete r s  ne7  are oriented along the contra-  

(1.95) 

(1.96) 

(1.97) 
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:ciriant base  vectors  r ' ,  t .e.,  wheq the ideal operation equations are in the 
form i 1.54)-( 1.58), the 'irst group of e r r o r  equations takes  the form* 

These equations a r e  fundamentally s imi l a r  to Eqs .  ( 1.95). Here  hk. lm? 
:ire the-. contravariant  components of the vector  instrumental  e r r o r s  \n. 
i n  the fundamental base.  

The second group of differential e r r o r  equations i s  reduced to 

b* - 8'1 r!: 4' + r,$ = imR. (1.99) 

;cht-,re 0' a r e  the contravariant  components of the vector  0 in the fundamen- 
tal base.  
corresponding s c a l a r  equations (1 .96)  

relations 

Eqs.  ( 1.99) a r e  c lear ly  equivalent to vector  equation (1.93) or to 

The total e r r o r s  in thv curvi l inear  coordinates x' are obtained f rom the 

( 1 .I 0 0 )  

which are analogous to E4ls. (1.94), (1.97).  

g r id s  are  cumbersome and complex. 
symmet ry  which could simplify the analysis .  
cannot be simplified by dropping s o m e  of the te rms ,  s ince  different t e r m s  
predominate under different operating conditions. Eqs .  (1.98)-( 1 . loo)  are 
linear, but their  coefficients, which are  determined by the t ra jectory of the 
moving object, are complicated functions of t ime.  

Eqs.  (1.98)-(1.100) take different fo rms  in different coordinate sys tems.  
This circumstance,  combined with the dependence of the coefficients of 
these equations on the t ra jectory of the object, makes for  a virtually 
unlimited number of a l ternat ives .  

Note, however, that general ly  we do  not have to expres s  the error 
equations in t e r m s  of var ia t ions of the ve ry  coordinates that the iner t ia l  
sys tem measures .  Indeed, one of the main problems in the analysis  of a n  
unperturbed iner t ia l  sys tem ( ideal  operation) is the appropriate choice of the 
coordinate system, and it i s  in these coordinates that the ideal operation 
equations are written. The  aim of the error equations, on the other  hand, is 
pr imar i ly  to  investigate such sys t em charac te r i s t ics  as stability and 
dependence of navigation errors on instrumental  errors and deviations 
in the init ial  sett ing.  To determine these charac te r i s t ics ,  we need not 

Eqs. (1 .98)- (1 . l oo )  and the resulting equations for par t icular  coordinate 
A s  a rule, they have no distinct 

These  equations in genera l  

* A n d r e e v ,  V.D. Equatiom of errors of an  inertial system measuring general curvilinear coordinates of a 
moving object. - Izveaiya AN SSSR. Mechanics, 30.4. 1965. 



Sr = hzbrr, (1.101) 

reduces Eqs.  ( 1 . 9 8 ) - ( 1 . 1 0 0 )  to Eqs.  (1.92)-(1.94) o r  to the corresponding 
Eqs .  (1.95)-(1.97). The relation of the e r r o r s  b x ,  by,  b t  to bxs follows from 
the definition (1.50) of the vectors  rk and the matr ix  of direction cosines  q, 
between the axes .Y, y, z and 51. :?, ti. This  relation is expressed in the form 

(1.1 02) 

For  orthogonal curvi l inear  coordinates x ‘ ,  the xyz  axes  may be r ep re -  
sented by the trihedron r 2 t y , .  
case  from ( I  .102) 

F o r  orthodromic coordinates we have in this 

61 = r bS cvs I, by  = r bz, 61 = 6r.  ( 1.1 0 3 )  

Similar  expressions are obtained for  geocentric coordinates: it suffices 
to replace S and z in (1.103) with ?. and q ~ .  

For the geographical coordinates we get 

(1.104) 

1.2.3. 
e r r o r  equations 

Alternative f o r m s  of the position 

In what follows, Eqs.  (1  a)-( 1.94) o r  the equivalent s ca l a r  equations 

Eqs. (1.95)-( 1.97) are obtained by projecting the vector equations (1.92)- I (1.95)-( 1.97) are general ly  used as the coordinate e r r o r  equations. 

(1 -94) onto the axes  of some  quite a rb i t r a ry  t r ihedron x y z  rotating with 

26 



: 1 ._. '-' 'iRPl.JP EC.1:. A ?  [ I  v?.: 

ai)solutr angular \-elocity 0). 
:inalyzed using .cy: axes  of some  special  orientation. 

[.et the vy: axes  have invariable orientation in space.  
1 1 . 9 7 )  '.ye should then p ~ t  + * ~ t = ~ + ) v = t o 2 = 0 ,  and E q s .  !1.95)-(1.96) take a 
relatively s imple fo rm 

E r r o r  equations (1.95)-( 1.97) a r e  often 

In Eqs .  (1.951- 

(1.105) 

Eqs .  f 1.9'7) a r e  not affected 
If .ryz a r e  the co-mr,ving axes on a s p h e r e  around the Ear th  and the ax is  

2 is directed along the vector r ,  we should take s = y =  0,  z = r t n  Eqs. !1.95), 
I I . Y ' i i ,  which give 

h i  + (1,; - (1); - (4; ) Ax + p (0 - GZ) by - 

-+ Ly) 6z + 20,6i = 

' Y  

_. 2 d Z  hi. + 

= \n - 2 \my; - Ahyr - Amzrc*x - Am.rrwz. 

+- ( f - 6); - 0; 63 ( I , )  y 10 1 - U) .r)bz - 
( 1 . I  07) 

(1.1 08)  

Eqs .  (1 .96)  are not affected 
Eqs .  (1.107), (1.108:, (1.96) are the projections of E q s .  (1.92)-(1.94) on 

the co-moving a x e s  XJ*Z. 

tal  plane r ema ins  quite a rb i t ra ry ,  and we m a y  cons ider  var ious par t icular  
cases. 

geocentr ic  axes .  

The  orientation of the axes x and y in the horizon- 

The xyz axes,  for example,  can  be identified with the or thodromic o r  
T h e  axes  x and y c a n  be d i rec ted  so as to make 0, = 0. 



Ch. 1 .  EI.EXIENTS (IF T H E  THEORY OF AL’TONOXIOLIS S Y S I  F \ I S  

Eqs .  (1.95), (1.96) then take the form 

(1.110) 

Eqs .  (1.97) reduce to Eqs .  (1.108). 

re la ted to w,, vv by the equalities 
The coefficients in Eqs.  (1.109), (1.110) contain only a,, w ~ ,  which a r e  

Since the projections w,. vY (and w,, ”y) of the absolute velocity (and accele- 
ration) of the object a r e  always bounded, 0,. c o y  (and their  derivatives) a r e  
a l so  bounded. 
Eqs .  (1.109), (1.110). 

a r e  made to coincide with the co-moving geographical axes  (direct ing the 
y axis  northward), the coefficients of Eqs .  (1.95), (1.97), according to 
equalities (1.8a) and mat r ix  (1.1 O ) ,  take the fo rm 

Various approximate methods can  thus be applied to 

In conclusion, note that if the x?z axes, to which Eqs.  (1.95)-(1.97) apply, 

(1.1 12) 

Expanding the expressions fo r  y and z in powers of e and retaining only 
t e r m s  up to e2, we find 

( 1.113) 

By (1.13) 

r = h + a ( I  - $ sin2v’). (1.1 14) 

F r o m  Eqs.  (1.112)-(1.114) i t  follows that if the t e r m s  containing products 
of e* and 6x, 6y .  62, Ox, eY, and instrumental  errors are dropped in Eqs.  (1.95), 
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1 1.271, these equations i n  projection onto thc geographical co-moving axes  
take thii s a m e  form as Uqs. (1 ,107) ,  (,1.198), and for  <oL = 0 E q s .  (1.95)-(1.97} 
recltice to Eqs.  (1 .1  O Y ) ,  ( 1.11 O),  and I 1  . I  O f ; ) ,  respectively. 
the rrsul t ing equations i s  not impaired,  s ince s imi l a r  assumptions were  
[iinde i n  the derivation 3f Eqs.  f 1.95)  ( e . g . ,  the variation o f  the nonspherical 
ccinipinents of the Eart: i 's  gravitational field, containing a factor ?), \V:IS 

The accuracy  of 

(.I ni I t t ed) . 

1 . 2 . 4 .  
'-,xes and fixed direct ions in space  

Orientation e r r o r  equations for  the sensitive 

The in*--rtial sys t em i s  exp' c ted to fix the orientation of the object in 
spsce,  a s  \vel1 as i t s  coordinates and velocities. In the f i t 1 3 1  analysis, this 
c lear ly  reduces to a determination of the orientation o f  the sensi t ive 
elements of the inertial  sys t em.  

In n perturbed sys tem,  the orientation of t h t  sensi t ive axes  of the 
acce lerometers  and gyroscopes differs  f rom their  orientation according to 
the idealoperationequations. This  leads toerrors in the attitude of the object 
and in the determination of fixed direct ions in space .  

acce le rometers  along the sy- axes  of the platform, the e r r o r s  of platform 
orientation are  charac te r ized  by a sma l l  rotation vector 0 satisfying 
Eq. (1 .93 ) .  
sensi t ive e lements  in svs t ems  using a free o r  controlled gyrof rame (or  a 
gyroscopically-stabilized platform) when the control torques a r e  functions 
of t ime only. 

The situation i s  somewhat m o r e  comples  when the orientation of the sy- 
axes (coinciding with t b e  acce le rometer  sensi t ive axes)  i s  a function of both 
t ime and position. Eqs .  (1.93) in this c a s e  a r e  insufficient to descr ibe  the 
pcrturbed s t a t e  of the .cy: axes. Indeed, hx, A m y ,  h i z  are pure instrumental  
errors.  
coordinate sys t em are not accounted for by Eq. (1.93), although they 
implicitly en ter  Eqs .  (1.92)-(1.94) on the whole. 

If the orientation of the axes  .v, y ,  z re lat ive to q', 112, ~2 ( o r ,  equivalently, 
re la t ive to t ,  11, L) i s  specified by the direct ion cosines f i L i ( q t ,  qk, 1131, the 
orientation e r r o r s  6x, $Y, Or of the unit vec tors  x ,  y. z along the axes  x, 11, P are  
given by':. 

If the iner t ia l  sys t em uses  a spat ia l  absolute angular velocity m e t e r  ivith 

This  vector  also charac te r izes  the orientation e r r o r  of the 

F u r t h f r  deviations of the axes  due to e r r o r s  introduced by the 

( 1.1 15) 

Here  rl. a r e  the unit vec tors  along I)', and the vec tors  fir and 0 a r e  defined 
by Eqs.  (1.92), (1.93);  summation f rom 1 to 3 ove r  s and i is implied. 
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Introducing the small  rotation vector 01, which determines the orientation 
of the tr ihedron x+br, y t b y ,  z+6z relative to the tr ihedron xyr ,  we write 
(1 ,115)  in the form 

(1.116) 

If the direction cosines lj,, do not depend explicitly on the coordinates $, 
w e  have dp,,/dq'= 0 and by ( 1.11 6)  

= - 0,. H l y = -  u , ,  UI, = - 4. (1.117) 

If the unperturbed axis z i s  directed along the radius-vector r ,  w e  have 

(1.118) 

and i f  further the axes x and 11 a r e  so  oriented in the horizontal plane that 
tq)z= 0, we have 

HI, = - H,; (1.119) 

i f ,  on the other hand, the axis y points northward 

012 = - €Iz +( + + e,) tgq. (1.120) 

For orthodromic co-moving axes,  cp should be replaced with z in 

Eqs.  (1.115) and the ensuing relations a r e  valid for  the c a s e  when the 
Eq. (1.120). 

accelerometer  sensit ive axes  fo rm an orthogonal tr ihedron, r ega rd le s s  of 
whether the system measures  Cartesian o r  curvil inear coordinates.  
directions e, of the sensit ive axes  a r e  not orthogonal, the expressions for  beT 
a r e  analogous to ( 1.1 15). 

If the 

Indeed, 

(1.121) 

Note that Eqs. (1.115), (1.121) and the ensuing relations r ema in  valid for 
orientation e r r o r s  of specific directions in space which a r e  not caged to the 
accelerometer  sensit ive axes.  
projecti le is f i red f rom a moving object or directions to earthbound m a r k e r s  
and celest ia l  objects used in navigation correct ions.  In particular,  i t  follows 
f rom (1.116) that the error  6p in the direction of a unit vector p pointing to 
a distant s t a r  a s  fixed on board the moving object f rom the readings of the 

These may be the directions along which a 
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! t i ~ ~ r t i a l  sys t em (and  in the axes  of the platformi, i . e . ,  a fixed direction in 
the (.)l:i:-:l systent ,  dcpcncls only on the gyroscope instrumental  e r rors ,  
sincc 

1,122) A!, = a .- p,  

5 1 .9 .  SO1IE RESULTS OF TIIE ANALYSIS OF E R R O R  
€: !I’A’fIONS O F  I\UTONOIIOUS INERTI.4 I, SI-STERIS 

1 . 3 , 1 ,  The second group of error  equations 

i\.e give he re  the principal resu l t s  of the analysis of e r ro r  equations of 
autonomous inertial sys tems:  ‘: coordinate e r ro r  equations ( 1  .95)-( 1.97) and 
orkcntatioti error  equations 1.1  16).  

‘The second group of coordinate e r ro r  equations (1.96) i s  solved, at least  
itt quadratures,  for a n  s rb i t r a ry  motion of the object ( a r b i t r a r y  w,it). ( ~ ) “ ( t ) ,  
, . i z f f ! b  and dtsregarding the particular f o r m  of \ m , i t i .  h , , f t i ,  \mz(f). Indeed, 
E q s .  I 1 .YS) a re  equivalvnt to vector equation ( 1.93) >which in projection onto 
fixed-orientation axes  gives three  independent f i r s t -order  equations (1.1061, 
;vhich can  be immediattAly integrated. Changing ove r  to projections onto 
moving axes  ( rotat ing with angular velocity o), we obtain the solution of 
E q s .  (1.96) in the f o r m  

(1.123) 

where ail are the direction cos ines  between the axes x ,  y .  z and 5.. Q, h. and 
u;, are the initial values of these  direction cosines.  
motion of the object, these  are known functions of t ime. 

Solution ( 1.123)  can  lie found direct ly  f r o m  Eqs .  (1.96), without changing 
ove r  to axes of fixed orientation, if we  r emember  that the genera l  solution 
of the homogeneous equations ( 1.96) i s  

For a given law of 

( 1 .124) 

*.?i x t d i l e d  analysis k i l l  be Cmnd tn ”Theory of Inert,al Navigation: Autommdus Sysrenls.” - Nauka. 1966. 
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where Ci are a r b i t r a r y  constants.  
solution of the homogeneous equations (1.96) can be verified by direct  
substitution. Note that 

That (1.124) a r e  indeed the general  

3 $ 

(1) - ai3a,, = - 2 &,,ai3. 

7 .  * 
o, = 2 aoall = - 2 &,,a,,. 
- 1 - 1  I-I 

I-I I-1 

Solution (1.123) leads to the est imate  

(1.125) 

For Amx = 0, Amy = 0, Am,= 0, relation (1.126) reduces to an equality. 
This  indicates that the homogeneous equautions (1.96) have the first integral  

e: + $ + e: = const, (1.127) 

which is obtained when the f i r s t  equation in (1.96) is multiplied by Ox,  the 
second equation by €4, the third by Oz, and the r e su l t s  are added. F r o m  
(1.93) we a l s o  see that A m =  0, so that 

A = no. (1.128) 

This  equality incorporates Eq. (1.127). 
Eqs .  (1.127), (1.128) for  a gyroscopically stabilized platform have a n  

obvious meaning: if the instrumental  e r r o r s  (gyroscope drift)  a r e  zero,  the 
platform p rese rves  i t s  original attitude. 
drift can be s imi l a r ly  interpreted.  

second group of homogeneous equations (1 .96 ) .  These are, however, f i r s t -  
approximation equations. 
have z e r o  roots, and no definite conclusion concerning the stabil i ty of the 
sys t em can  be made. 

between the axes  n. y. z and 

Est imate  (1.126) for  F 

Note that Eqs.  (1.127) ,  (1.128) lead to nonasymptotic stabil i ty of the 

In our case the first-approximation equations 

The exact equations fo r  the perturbations ba1, of the direction cosines  a,, 
q,. L a r e  obtained in  the form" 

( 1 . 1 29) 

They can be reduced to the equations 

(1.130) 

* See footnote on previous page. 
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3,vhence fo l lokvs  nonasymptotic stability with respec t  to the per turbat ions 
Ihfi,, 

1 .3 .2 .  
for latitudinal motion 

Stability of the f i r s t  group of equations 

Consider the f i r s t  group of equations (1.95).  In the genera l  c a s e  the i r  
analysts  involves insurmountable difficult ies.  T h e  ana lys i s  can  be c a r r i e d  
(Jut t o  completion only for objects  moving with constant velocity along the 
parallel, when a n  appropr ia te  choice of the xpr  axes  will reduce  Eqs .  (1.95) 
t (J  equations with constant coefficients, and for the c a s e  of Keplerian motion. 

Fo r  a n  object moving with constant velocity along a paral le l  a t  a constant 
dis tance r f r o m  the Ea r th ' s  cen ter ,  we can  choose x y r  as the  co-moving 
geocentr ic  axes ,  so that 

(1.131) 

i rhere  v i s  the velocity of motion and cp i s  the lati tude.  F r o m  (1.107) we 
( + b t ; + i t i  the f i r s t  g roup  cbf error equations in the fo rm 

(1.132) 

T h e  constant coefficients of Eqs .  (1.132) are  defined by Eqs .  (1.131). The  
cha rac t r r i s t i c  equation of this  sys t em is a complete cubic equation for the 
squa re  of the unknown 9 = p ? .  This  cubic equation has  the fo rm 

To ensu re  inonasyrrptotic) stabil i ty,  Eq.  (1.133) should have negative or  
zero  roots ;  multiple roots  of the charac te r i s t ic  equation should cor respond 
to l inear  e lementary  d v i so r s  of the charac te r i s t ic  ma t r ix  of Eqs .  (1 ,132) .  

a s  describing the motion of a point mass about i t s  equilibrium position 
i6.v= 0, b y =  0,  6: = 0 )  in a force f ie ld  which is a superposit ion of a potential 
force function 

The  s tabi l i ty  in this  case c a n a l s o  be  de te rmined  if we in te rpre t  Eqs. (1.132) 
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and the gyroscopic fo rces  

(1.135) 

The homogeneous system (1.132) has  the energy integral 

which is obtained when Eqs.  (1.132) a r e  respectively multiplied bv &, 6;, 6;. 

If the gyroscopic fo rces  (1.135) a r e  dropped from Eqs.  (1.132), w e  a r e  
left with potential fo rces  only. 
field, the force function should have an isolated maximum at  the equilibrium 
point. 
variables,  the conditions of a maximum a r e  Sylvester 's  conditions for  a 
positive definite quadratic fo rm.  

To allow equilibrium in a potential force 

Since the force function (1.134) is a quadratic form of the relevant 

In our  case these a r e  the inequalities 

4 - 0; - 0: > 0. 2 9  - 20: + a', < 0, (1.137) 

In Figure 1.8, l ines 1 and 2 correspond to the equalities 

O;-O;-O:=O and 2%-220:+02=0. (1.138) 

We s e e  that the regions defined by inequalities (1.137) do not intersect,  
and the force function has  no maximum. 
geneous function of second degree, Lyapunov's theorem definitely s ta tes  
that the system is unstable, without going into higher-order t e rms .  

Figure 1.8), where the degree of instability (the number of negative Poincark 
stability coefficients) of a conservative system i s  odd, the gyroscopic forces  
according to Thomson and Tate 's  theorem, cannot stabil ize the equilibrium.* 
In region 2, where the degree of instability i s  even, gyroscopic fo rces  in 

Since the force function is a homo- 

Let u s  r e tu rn  to gyroscopic forces  (1.135). In regions 1 and 3 ( see  

* C h e  t a e v. N.G. Ustoichivost' dvizheniya (Stability of Motion). - Gostekhizdat. 1955. 
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principle may stabil ize the sys tem.  The result ing stability, hoivover, is  
transient,  as i t  is destroyed by the internal dissipation forces .  

1 . : 3 , : 3 .  
for a s ta t ionary object and for an object moving along 
the a r c  of a fixed-attitude grea t  c i rc le  

Solution of the fi.rst group of e r r o r  equations 

sviil now so1i.e the first group of e r r o r  equations (1.132)  for tit'o 
psirticular cases :  the c a s e  of a n  object ivhich i s  s ta t ionary in the O I r  1 1 ;  
.iv.>tem and an object which moves :i.ith constant velocity at a constant 
didtatice f rom tht-~ E a r t k ' s  Center in a plane through the Ear th ' s  cen ter  
'motion along thf a r c  of a grea t  c i rc le  on a fixed s p h e r e  around the Ea r th ) .  
The gctit..ral c a s e  of motion along a paral le l  ivill not be considered h e r e  and 
the r t ,ader  i s  re fe r red  t o  my- "Theory of Inertial  Navigation: Autonomous 
Systenis." These t \vo  p i r t icu la r  c a s e s  a r e  quite sufficient for the following 
tl'eattnf.tlt. 

For  a s ta t ionary objc>ct in the Or: r l : ,  coordinate system, fixing the 
ori+-ntation of the . ~ y t  axes  so that the ax is  L' points along the, radius-vector 
r ,  x e  obtain the equaticn of e r r o r s  in the form ( i n  (1.132) the absolute 
angular velocity projections ( . I \ ,  o ) ~  a r e  taken equal to zero)  

(1 .139 )  

( 1.140) 

E,'or constant instrumental  e r r o r s  and z e r o  initial conditions, w e  have 

(1.141) 
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If I,,,; > - I ; ,  i . e . ,  the \?elocity of the object is l e s s  than the c i r cu la r  velocity, 
Eq.  t 1.147)  has  tLvo r ea l  and tLvo complex conjugate roots 

(1.148) 

t'or (e),. = 0, the root z: 1 1  goes ove r  to to),) L'T, the root 5 j v  to t j ~ , )  . 
~ . ~ i = ~ ' ~ ,  i . t . . ,  for a satel l i te  in  c i rcu lar  o r b i t ,  (I= 0,  \'=,b)u. The plot u f  1' and 
v :<s a function of o ) $ ,  i s  shown in Figure 1.9. v is virtually invarkable in the 

2 - t i t i r e  range O < < * ) , < o r . , .  
its niasiniutn for w ~ ,  = O I ,  \?S. 
p monotonically d e c r e m e s  from p = ~ ~ , ) ' ?  to 0. 

< * !  -:#,) I 2 .  

c'rcases h:irdly by 0.15 of i t s  value at the point w Y =  0.  
\.-?riation of !I is in  the :'ange w,? < w Y  <w,, x h e r e  1 1  falls  oft' s teeply.  

For  

I t  is equal to wo fort.), = O  and ,o , ,= lq )2nd  r eaches  
This  maximum is equal to wU \ 9,'$ % 1 . 0 6 ~ ~ .  

Wore tfiat for 0 <I,>!, < C I , ! ' ~ ,  !I de- 
It is equal t (3  v a t  the point 

, -  
A t  this point ~ = v = I . I ,  1 m. 

The remainlng 

(1.149) 
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(1.1 

I F o r  constant instrumental  e r r o r s  and z e r o  initial conditions, w e  have 
from (1 .146) ,  (1.149) 

2 o Y ~ v  ( A n ,  + 2roy Amy) 

Any - ray Am, 
ay = ( 1  -cos&), 4 (1.150) 

x [p2(wi - w; - v', cos vt + 
2oy An, + ~ ~ ( 0 : -  0: + @)ch pf] 1 - (p2 + V 2 )  vv (Fs invt  - v sh p). 

If W; ((4, the solution of Eqs. (1.145) for  constant instrumental  e r r o r s  
can be'simplified 

(1.151) 
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i rom 1.1-46~,  ( 1  .;.-I~J ..;e can  obtain expressions for h.r. Ay, h= for a satel l i te  
in c i rcu lar  orbi t .  Tsking the limit <C,I~+O,),  !ve obtain fu r  this c a s e  

F o r  constant instrumental  e r ro r s  and z e r o  initial conditions, we have 

1 . 3 . 4 .  
equations f o r  Kepler  .an motion 

Integration of the f i r s t  group of 

(1.153) 

Consider  the case of Kepler ian motion. Turning to the vector  equation 
i 1.92), we note that the corresponding homogeneous equation can  be wri t ten 
in the form 

*\,Z+FJ d.r p r  = 0. (1.154) 
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Thus, if the point 0 where the acccleromcter  sensit ive m a s s e s  a r e  
located coincides with the center  of m a s s  of the Object, the homogeneous 
equation (1.52) is the variational equation of Keplerian motion 

(1.155) 

The general  integral  of Eq. (1.155), containing s ix  a rb i t r a ry  constants, is 
wel l  known. According to Poincar6 's  theorem, the particular solutions of 
Eq. (1.52) a r e  the derivatives of the general  integral  of Eq. (1.155) with 
respect  to the a r b i t r a r y  constants.':: The general  solution of the inhomoge- 
neous equation can be obtained by Lagrange's method of variation of the 
constants.  

With the orbital  plane of the object we associate the axes  Ol;:q:<;, so that 
the plane 0, j :q :  i s  coplanar with the orbi t .  
the orbital  plane, so that the object moves counterclockwise if viewed from 
the end of this axis .  Keplerian (elliptical) motion in the orbital  plane i s  
described by the e qual i t i e s *':' 

The axis 01:: is perpendicular to 

(1.156) 

s i n  E= f sin k,M, 
K - l  

where a i s  the semimajor  axis, e is the eccentricity of the orbit, ,M. E ,  'v a r e  
the mean, eccentric,  and t rue anomaly, v is the mean orbital  frequency, 
o is the angle between the axis 5; and the cu r ren t  radius-vector r of the 
object, o i s  the angle between thc axis and the direction to the perigee, 
t o  i s  the time of perigee passage, Jk is Bessel ' s  function. 

FIGURE 1.10. 

*See ,  e .&,  G o u r s a t ,  E .  Cours d'Analyse. - Paris, Gauthier-Villan. 1'905. 
* *  See,  e .g . .  D u b  os  h I n, G.N. Nebesnaya mekhanlka. Osnovnye zadachl I metody (Celestlal Mechanlcs 

Problems and Methods). - Fizmatgiz. 1963. 
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Then 

r=5.$+ ILIL+& 
€, = rcosacos p. '1. = r (cososinasinp + sinocosa). 

i = r (- cos0  cosasin p + sin o sina), 

f 1.' RESI ' [ .T \  OF TtIE A X p \ t Y < [ q  ( Y  ERPOI' FOl!ATI(~\~ 

Eqs.  (1.156) contain four  a r b i t r a r y  constants, to, e. a ,  O.  The two missing 
constants enter  the definition of the orbi ta l  plane relative to the 0,;,11.:, axes .  
Th? relative orientation of the 0,5.1& and Oi;Lq;g axes (F igu re  1.10)  is 
defined by the following matr ix  of direction cosines: 

C f  e. rl: 5: 
cos 6 0 sin p 

3, 

'1, s inrts inp cosa - s i n a c o s p  
t -csususinp s i n a  cosasosp.  -t 

(1.157) 

( 1  . I  58) 

i v h e r e  &, 'I. 5 ,  a r e  t h e  unit vectors of the corresponding axes.  

a rb i t r a ry  constants, P , r ,  a .  a. a .  0. it'ithout loss  of generality, we may take 

t o  = 0 ,  a = p = C J .  8 . )  = o ( 0 )  = 0.  (1.159) 

Eqs. (1.156),  (1.158) give the general  integral  of Eq. (1.155) with s ix  

s o  a s  to simplify fur :her  notation. 

radius-vector r frorn Eqs. (1.156), (1.158) with respect  to the a r b i t r a r y  
constants: 

L V e  f o r m  the fo1lo"ing l inear combinations of the derivatives of the 

( 1.1 60) 

Let p be the total derivatives of the vectors qi with respect  to t ime. The 
\-ectors 4 : .  p, clear ly  constitute a system of pa;.ticular solutions of Eqs. ( 1 . 2 ) .  

Taking the projections of the vectors  4,. p,  on the orbital  axes  x .  y .  t ,  with 
t h e  I axis  pointing along the vector r and )I d irected along the axis  o,z, w e  
form two ma t r i ces  A and B with the following elements: 

(1.161) 1 A , ,  == 9, . x. .4?i = q, ' 2, A,, = p ,  , x, = p t  . 2 
( i  = i .  2 .  3 .  4,. 

Eli = qi -+ . Y. B,, = p ,  . y (i = 1 ,  2)+ 

where n. y. z a r e  the unit vectors of the orbi ta l  axes .  In calculating the 
matr ix  elements of A and B, w e  use  the following equalities: 

(1.162) 
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Cti. 1 .  ELEMENTS OF THE ' 1 t I K ) K Y  OF AL!?ONOMcK!S b Y b I ' t M b  

The projections of Eq. (1.92) on the orbi ta l  axes  x y z  a r e  obtained from 
Eqs.  (1.107) taking o, = 0 .  
orde r  sys tem 

They can be written in Cauchy form as a fourth- 

X I  = - oyx.2 + x3. 

x, = O y X ,  + 4, 
x - -uyx4- - "+An, -22 ;  A m , - r a m , .  ' (1.163) 

X 4 -  --o y J  x +*+An, r a  + 2rw,Am,, 

3 -  r3 

where x , = & x .  x 2 = 6 z ,  and a second-order sys tem 

(1.164) 

where x , = b y .  

X .  y ,  Z ,  and x3. x6. x4  are the corresponding projections of the vector drldt .  
The matr ix  e lements  of A and B constitute l inear ly  independent solutions of 
the homogeneous sys t ems  (1.163), (1.164), since the determinants  of A and 
B a r e  the Wronskiars  of these solutions and do not vanish: 

The var iables  x l .  x5.  x2 are the projections of the vector br on the axes  

I A I=-- v'/2, 1 B I=\,-. 

The general  solution of homogeneous sys tems (1.163), (1.164) can  now be 
written in the form 

4 2 

~ , = x A , ~ C ~ ( i = l .  2 ,  3. ~ ) , X , = ~ E , , C ~ + ~  ( f = l ,  2). (1 .165)  

The solution of the inhomogeneous equations (1 .163 ) ,  (1.164) is obtained 

j = l  

f rom (1.165) by variation of constants. 
G = K 1  and changing over f rom xi. xs. x2 to bx, by. b z >  w e  obtain for the 
projections of the vector hr on the orbi ta l  axes:'" 

Introducing the ma t r i ces  L ) = A - '  and 

(1.166) 

Sy = B,, [i (Any + 2; Am, + r Am, - 
6 - I  

* And r e e v ,  V.D. Integration of the equations of errors of an inertial navigation system for Keplerian motion 
of the object. - Pnkladnaya Mateinatika I Mekhanika, Vol. 29, No. 2. 1965. 
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For C':, Cy++ we get 

(1 .167)  

(1.168) 

D?3, &. G$, G:? a r e  obtained f rom Eqs. (1.167) putting t = 0, v = 0 .  
~7~~ D:?, G:!~ are given by 

(1.169j 

e:, =I I - - e .  G$=O. 

In Eqs .  (1.168), by (1.163), (1.164), (1.162), 

(1.170) 

F o r  e = 0,  i.e., a c i r cu la r  orbit ,  

r = : a .  r = Q ,  v = o  =ou, u=* .  &,=o. (1.171) 

and Eqs. (1 .266)  reduce to previously obtained Eqs. ( I  .152). 

L u r ' e ,  A.1. Free fal l  of a   MI^ mass on board a satellite. - Prtkladnaya hlatematika I hlekhanika, 
V ~ l . 2 7 ,  No.1. 1'363. 



Ch. 1. FI.EMFST5 O F  THC rHFOllY OF AUTONOXIOI'S S Y S T F L f S  

1.3.5.  Position and orientation e r r o r s  a s  a function 
of instrumental  and initial setting e r r o r s  

k 'or  an object which is stationary in the O,E,q,G, system, in c a s e  of 
constant instrumental  e r r o r s ,  the total position e r r o r s  bx2,  by2. 4z, a r e  
expressed in t e r m s  of the solutions (1.140) of the f i rs t  group of equations 
and in t e r m s  of the solutions 

r , r 

ex  = S ~ m , ~ ~ i t + ~ : ,  t i , = j ~ ~ ~ , d t  +e;, e r =  [ ~ , ~ , d t - e :  (1.171a) 

For 
u I, 0 

of t h c  second group of equations, which follow f rom (1.123) and (1.108). 
coilstant instrumental  e r r o r s ,  w e  have from (1.108), ( l . l 7 l a ) ,  (1.140), and 
( 1 , 1 4 1 )  

(1.172) 

The e r r o r s  hx:. Oy2 have a constant component, which fluctuates with 
Schuler 's  frequency wt, (with a period of about 84 min) and a monotonically 
incri.asing component, which i s  proportional to t ime. Quantitatively, partial  
e r r o r s  of 1 km a r e  caused by accelerometer  e r r o r s  A l l r ,  A n , , = S .  lo-* m / s e c 2  
(i .e, ,=-8.  initial orientation errors 0:- 0e-1.6. rad (=-0'.55), 
e r r o r s  in the initial coordinates axo. b y o =  1 km and initial velocity e r r o r s  
&io. h;o*1.25m/sec. 
scope drift with minus sign) not to exceed 1 km in 1 hour, 
at most 4 . 4 .  IO-* sec- '  ( i .e . ,  0.009 deg /h r ) .  

the e r r o r  6z2 increases  exponentially. Thus the inertial  system is capable 
of autonomously measuring the distance r f rom the Earth with acceptable 
accuracy only over  relatively short  t imes.  For instance, if the acceptable 
e r r o r  is 6.7, = 1 km, then for  the previously cited inaccuracies of accelero-  
m e t e r s  and initial setting, w e  have he re  t imes of about 10-15min. 
that since the object i s  stationary, the e r r o r s  hz? do not affect the e r r o r s  
OX?.  by> , 

For the e r r o r  due to the inaccuracies Am,.  -\ttty (gyro- 
Amr, . h t Y  should bc 

F r o m  the third equation in (1.172) it follows that in prolonged operation 

Note 

The orientation e r r o r s  in fixed-attitude axes with constant gyroscope 
e r r o r s  a r e ,  by (1.117), (1.171a), 

(1.173) I HI I = -Am,f - 0';. 01, = - Am$ - 0;. 
'),* = - Am,t - 0;. 

i.e., they a r e  proportional to t ime.  
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Orientation e r ro r s  in azimuthally f r e e  a x e s  are  given by (1.118) ,  (1.119) 
For  constant instrumental  errors, we have 

(1.174) 

I = - h ; t  - 0:. 

It follows f r o m  thvse expressions that the angles  O,,, which cha rac -  
t e r i ze  the e r ro r s  in lhe  directionof the ver t icalcontainonlya constant conipo- 
nent andone  which osc i l la tes  with frequencyw. 
x-erttcal is due to acce le romete r  errors Anr, An:: % 1.5 . 
setting errors &.@, 6y') = 1 .8 km, A.&+ &+' 2 .3 m /  s e e .  T h c  angle O l z  which 
cha rac t e r i zes  the e r ro r  in the determination of the azimuth contains a 
growing component proportional to  t ime.  
ments  to be met  by the azimuthal gyroscopes in  iner t ia l  s y s t e m s  (direct ional  
gyroscopes) .  

Orit-tntation errors in the geocentric co-moving a x e s  differ from the 
yrrors ( 1.1741 only in that the third relat ion i s  replaced in accordance with 
Eq.  1 1 , 1 2 0 ) ,  and so 

biz === - ..\fn>f - $3 '4ir (1.175) 

A par t ia l  error  of 1' in the 
m / s e c 2 ,  and 

Th i s  explains thc r ig id  r equ i r e -  

\r.here Ox2 i s  taken from the f i r s t  re la t ion in (1.172). T h e  geometr ical  
meaning of the las t  t e r m  in (1.175) i s  obvious: nea r  the pole small  e r ro r s  in  
position determinati3n lead to substantial  errors in the determinat ion of the 
northward direct ion.  

I.et u s  now consider  a n  object moving along the a rc  of a g r e a t  c i r c l e .  
The  total  position e r r o r s  in this  case are  found from (1.108), where  6 x . b y .  62 
and O x ,  t),, a r e  inser ted.  T h e  values of bx ,  by .  62 are taken from (1.146), 
( 1  ,149);  for  the e r r c r s  e x .  Oy,  tir we obtain from (1.123) 

(j ., - - 8" ,cosmjt  . - 8 f ) s i n o , t +  
f 

-b' 1 [ h Z , c O S o , ~ t  -T) - h , S i ~ 6 ) , ( t - ~ ) ] d T .  
1 

( I  .176) 

oi = 0: s i n  w y t  + 8: cos o,t + 
+ J [Amx s i n  wy (t  - T) j- Am2 cos oy ( t  - r)l dT. 

I 

0 
J 

In case of constant ins t rumenta l  errors and constant m y ,  we have 

ti, =(o: ++jcoso , t+( -  e : + ~ ) s i n ~ y t - ~ ,  

0, =eo, + h , t .  

) cos o,t + -Im, . 
( 1.1 77) 



( ti. 1 .  EIFMEN’I? OF TllF THFORY OF A I I T O N O M O t ‘ S  S Y S T F \ I S  

For  velocit ies much l e s s  than the c i r cu la r  velocity, w e  obtain from 
(1.108),  (1.177), (1.151) the following approximate expressions: 

I 

\L.L.”, 

The expression for  6z2 coincides with the third expression in (1.172).  The 
expression for  6.x? differs f rom the corresponding expression in (1.172) only 
in the fourth t e rm,  which shows that in this ca se ,  a s  distinct f rom the 
stationary case ,  the position e r r o r  in the direction of motion contains 
exponentially growing components. They a r e  multiplied by the rat io  wS/w,.  
The quantitative effect of these components on 6x2 becomes c l e a r  f rom the 

bit’ following example.  Let / 6 ~ 0 + % ) ,  - be of the s a m e  o r d e r  of magnitude a s  

have a marked effect on 6x2  only if (2 ]‘?-mS sli 10, j f i t ) / 3 ~ 0 , ) ,  ( 2 ~ 1 ~  (ti w,, \ e t ) / 3 6 ) , )  become 
comparable to unity following the inc rease  in s l ~ w , ~ ) f i t ,  c h w , , l 1 1 ? t .  The t ime 
t ,  required for  this is readi ly  es t imated.  
magnitude a s  the Ea r th ’ s  spin ( 6 1 , 1 ’ ( 4 ) v = G ) 0 / U ~  18), we have t ,  - 35 min, for 
0),!6)y - 6 ( l inear  velocity - 1,000 m /  sec )  this t ime drops to t ,  
~ , ) ! b ) ~  -3 ( 
approximate expression (1.175) for  ax? i s  valid for  oyhO = 1 / 3 .  
the variation of the roots  11 and v of the character is t ic  equation (1.147) a s  a 
function of my (F igu re  1.9), it c a n  readily be shown that Eq. (1.178) for  hx, 
gives sat isfactory accuracy up to 

If oy is of the s a m e  o r d e r  of 

25 min, for  
It is readily seen  that the 2,000 m/  sec), we have t ,  = 20 min. 

If w e  r eca l l  

1 / 2 .  
Eq. (1.178) for 6ji2 differs f rom the corresponding expression in the 

stationary c a s e  in that it i s  free f rom t e r m s  proportional to t ime. However, 
the las t  two t e r m s  osci l la te  with the frequency oy. 

oscil lations a r e  determined by the r a t io s  rAm,lo,,, rAm,/o,. 
these amplitudes do not exceed 1 km, the r a t io s  Am,‘o,. Am,fo, should not 
exceed a figure of the o r d e r  of 3 . 
-0 .005deg/hr ,  for  w y = 6 u  (=2 ,00Om/sec ) ,  Am,, AmY-0.025deg/hr, and for 
oy = coo. Am,. Amy 

The orientation e r r o r s  are specified by Eqs. (1.117)-(1.120), ( 1  
(1,177), (1.178). 
inaccuracies  is the same as fo r  6x ,  6y, 6x,, ex. Oy,  8=. 

Consider the position and orientation e r r o r s  for motion in a Keplerian 
orbi t .  

F o r  Keplerian motion, f rom Eqs.  (1.123), (1.125), seeir - 
a,* = 0, u13 = cos u. %, = cos u, an = 0, cl, = sin u, aB, = 0, u3* = I ,  

The amplitudes of these 
If we stipulate that 

For oY=u we then have Am,, Amy- 

0.075 deg/ h r .  

The dependence of these e r r o r s  on instrumental  and sett ing 

= 0. (J= oy, or 

1.151), 

ig that a,, =-stno, 
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d i rect ly  solving Eqs.  (1.96), we find 

ex = cos i oy dr - e: sin j o y  dr  + 
0 I 

+j 
e -  

y - .  

e, = 6 

(1.179) 

For a c i r cu la r  orbi t*  and constant instrumental  e r r o r s ,  seeing that 
, .)y=v=const, we find 

i i .180)  

The total position e r r o r s  for  elliptical motion a r e  obtained from 
Eqs.  (1.108), f1.166),  and (1.179). For motion in a c i r cu la r  orbit with 
constant instrumental  e r r o r s ,  w e  have f rom Eqs. (1.108), (1.180), and 
( 1  .152) (V==<,hj) 

bx: = r e i  +- 6.r' + + (4  sin vt - 3vt) + 
f 6 6 z ' c s t n v t - v t ) ~ ~ ( c o s v t -  L& I ) +  

I (1.181) 

The right-hand s ides  of (1.181) a r e  f r ee  f rom exponentially growing 
t e rms .  
with t L  a r e  multiplied only by the instrumental  error Anx of the longitudinal 
acce lerometer .  

F r o m  Eqs.  (1.181). (1.180), (1.152), (1.117)-(1.119) w e  find the  orientation 
e r r o r s  re la t ive to the fixed and orbi ta l  axes .  
fully descr ibed by Eqs.  (1.180) and (1.152). 

They only contain t e r m s  proportional to t and t z ,  and the t e rms  

These orientation e r r o r s  a r e  

T h e  solution for eUiptica1 ort its w i l l  be found in my "Theory of Inertial Navigation: Autonomous System. 
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Chapter  2 

AIDED I N E R T I A L  SYSTEMS:  A L T I M E T E R  
CORRECTION 

§ Z . l .  GENERAL CONSIDERATIONS PERTAINING 
TO AIDED INERTIAL SYSTEMS 

In the previous chapter we discussed the main propert ies  of autonomous 
inertial  sys tems.  
parameters  f rom the information supplied by the readings of inertial  
sensi t ive elements,  namely acce lerometers  and gyroscopes.  N o  additional 
information i s  used, except the initial conditions which a r e  assumed known. 

functional stability of autonomous inertial  navigation sys tems.  Their  
solution links up the e r r o r s  in the navigation parameters ,  on the one hand, 
with instrumental  e r r o r s  and inaccuracies  in the initial conditions, on the 
other .  

system cannot function for  a long t ime with sat isfactory precision. 
total position and orientation e r r o r s  inevitably build up with time. 
motion with low velocity, the position e r r o r s  increase  exponentially, for  
Keplerian motion the e r r o r s  a r e  a quadratic (parabolic) function of t ime.  
Orientation e r r o r s  a t  their  best a r e  proportional to time. 

Consider an inertial  system which i s  required to fix the position with a 
definite accuracy during a cer ta in  period of continuous operation. Then, 
given the dependence of navigation e r r o r s  on instrumental  e r r o r s  and setting 
inaccuracies, we can in principle design the system elements  and se t  the 
initial conditions in such a way as to meet the tolerance standards, the 
e r r o r  buildup notwithstanding. However, in practice, the resulting 
tolerances of the elements  and the initial conditions may be so stringent as 
to make the sys tem impracticable. 

A possible way out of this dilemma is provided by aided sys tems using 
additional guidance information, i.e., inertial  sys tems with correct ion from 
external  sources  of information. This  aiding information may include the 
altitude of the object above the Ear th ' s  surface, measured barometr ical ly  
o r  with a radio al t imeter ;  the velocity of the object re la t ive to the Ea r th ' s  
surface,  determined from the Doppler effect or a i r  log readings; the 
position of the object re la t ive to the Ear th  determined by a radio navigation 
sys tem or radar ,  e tc .  The gyroscopic elements of the inertial  system may 
use astronomic (or celestial)  correct ion methods, which in the final analysis 
involve comparison of the orientation of the gyroscope axes with fixed 

These sys tems determine the navigation and guidance 

The equations of e r r o r s  given in the previous chapter determine the 

The solutions of the e r r o r  equations show that an autonomous inertial  
The 

F o r  

48 
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directions to s t a r s  and planets, or  correct ion using the direction to Ea r th  
m a r k e r s  o r  moving objects (e.g., ar t i f ic ia l  Ea r th  satel l i tes)  whose motion 
relat ive to the Ea r th  is known with the des i r ed  accuracy.  

The  readings 
of the inertial  sys t em a r e  periodically compared with the values of the 
navigation pa rame te r s  obtained f rom other  sou rces  of guidance information 
and appropriate correct ions a r e  introduced. 
transient p rocesses  in the iner t ia l  sys t em a r e  not considered. 
betiveen co r rec t ions  Ls determined by the t ime during which the sys t em 
errors r ema in  within permissible  l imits.  
sys t em increase at least  a s  a quadratic function of time, the correct ion 
interval should rapidly dec rease  with t ime for  equal e r r o r  increments .  The 
aided inertial  sys t em i s  thus essent ia l ly  a device which s t o r e s  for  s o m e  
t ime t h e  exact inforrration on the navigation pa rame te r s  supplied by external  
s o u r c e s .  Continuous correct ion i s  meaningless in this c a s e .  Simple 
periodic co r rec t ion  of the iner t ia l  sys t em naturally does not introduce any 
fundamentally new effects not covered by the theory of autonomous iner t ia l  
sys t ems .  

Fu r the r  deb-elopmlint of the correct ion principle can  take the following 
~ r w r s e .  The readings of the iner t ia l  sys t em a r e  periodically co r rec t ed ,  
:-itid t h e  inertial  svs t em i s  r e s e t  as if the correct ion t ime w e r e  the initial 
( s t a r t i ng )  t ime of i ts  operation. 
during the co r rec t  ion interval a r e  thus c l ea red .  
remain constant.  
initial sett ing of t h e  sys t em (we mean here ,  naturally, i t s  sett ing on board 
t h c  ni(-)\ring object) .  

The s implest  aide3 sys t em can  be visualized a s  follows. 

T h e  sources  of e r r o r s  and 
The interval 

Since the e r r o r s  of a n  iner t ia l  

The  e r r o r s  built up by the iner t ia l  s y s t e m  
The  co r rec t ion  intervals 

This  correct ion procedure in pract ice  amounts to another 

Continuous correct ion i s  again meaningless in this 
Case. 

The second correct ion technique, like the f i r s t ,  does not affect the 
fundamental s t ruc tu re  of the inertial  system, i t s  operation algorithm, the 
e r ro r  equations (escept  the setting e r r o r s ) ,  s o u r c e s  of e r r o r ,  and e r r o r  
dynamics.  
propert ies  into the in-rt ial  sys t em.  
in these cases does not d i f f e r  f rom the analysis  of autonomous ine r t i a l  
s y s t e m s .  

Much m o r e  interesting a r e  the correct ion techniques which affect the 
functional algorithm of the iner t ia l  sys t em.  A s  a resul t  of the change in the 
algorithm ( the  ideal operationequations),  the s t r u c t u r e  of the e r r o r  equations 
a l so  changes, i.e.. in the f inal  analysis  the dependence of s y s t e m  e r r o r s  on 
instrumental  and se t t  mg e r r o r s  i s  changed. These  co r rec t ion  techniques 
naturally presuppose availability of the external  guidance information fo r  a 
sufficiently long t ime o r  even during the en t i r e  cour se  of operation of the 
iner t ia l  sys t em.  

Suppose the iner t ie l  sys t em m e a s u r e s  s o m e  coordinates x i ,  x2. x3 of the 
object.  
of the coordinates,  xi say,  c a n  be computed continuously and independently 
of the iner t ia l  sys t em.  In this case we can c l ea r ly  u s e  the computed value 
of the coordinate % I  to f o r m  the t e r m s  of the ideal operat ion equations which 
include this coordinate.  
t e r m s  which contain the r a t e  of change 
if the external  s o u r c e s  provide information o n  the rate of change XI, 
integration gives x i .  

Both thes- correct ion techniques do not introduce any new 
The analysis  of the s y s t e m  operation 

Let fu r the r  the external  s o u r c e s  supply information f rom which one 

By differentiating x i ,  w e  can fu r the r  fo rm the 
of the coordinate X I .  Conversely,  
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Two possibilities a r i s e  in this ca se .  We may fo rm a 11 the t e r m s  
containing X I ,  X l  in the ideal operation equations. The inertial  system is then 
reduced to a two-dimensional setup. 
axis  i s  along the normal  to the coordinate surface X I =  const can be dispensed 
with in this ca se .  
e r r o r  equations. 
moved to the right-hand side.  
provided that the e r r o r s  in the determination of X I ,  

guidance information are known functions of t ime (whether determinate o r  
random). 

An alternative approach i s  to use the external information only for 
s o m e  of the t e r m s  with xi, X'l in the ideal operationequations. We naturally 
choose those t e r m s  which a r e  responsible for  the particularly disturbing 
and undesirable contributions with &AI. &I in the e r r o r  equations. A three-  
dimensional system, with a l l  the three accelerometers ,  i s  retained in this 
c a s e .  The o r d e r  of the coordinate e r r o r  equations does not change, the 
only difference being that some of the t e r m s  with 13x1. &I are moved to the 
right and a r e  dropped out f rom the homogeneous e r r o r  equations. As we 
shal l  see in the following, both methods of continuous correct ion using 
additional information on X I ,  lead to very interesting r e su l t s .  

If the additional guidance sources  supply two coordinates, x1 and n2 say, 
as w e l l  a s  their  t ime derivatives,  the above procedure can be extended to 
cover all  the coordinates.  By forming al l  the t e r m s  in the ideal operation 
equations from the external information, we reduce our  system to a one- 
dimensional setup, whereas if some  of the t e r m s  are left in, we have a 
two-dimensional system. Finally, the three-dimensional arrangement  may 
naturally be preserved.  

We have so  far assumed the coordinates X I ,  x2 to be known. The situation 
hardly changes if the external information sources  do not supply the coordi- 
nates X I ,  x2 but one or two relations of the fo rm 

The accelerometer  whose sensit ive 

The equation containing &I drops out f rom the set of 
In the remaining equations, the t e r m s  with & I ,  &;I a r e  

They a r e  now known functions of time, 
from the external 

F, ( X I ,  x2,  x3, t )  = 0 (2.1) 

among the three coordinates.  
external information on the coordinates of the object, which may permit 
reducing the number of accelerometers  in the system to two or even one. 
Additional information on orientation can be s imilar ly  employed. In this 
c a s e  the system will require  only two or possibly one gyroscope. Note, 
however, that two gyroscopes a r e  quite sufficient for  fixing the orientation 
of the object even without any external  information. 

A fundamental feature of this aiding technique for  inertial  sys t ems  is the 
continuous assimilation of the external  information in forming the ideal oper  - 
ation equations and the dependence of the s t ructure  of the e r r o r  equations on the 
particular mode of application of the additional information. 
longer simple correct ion of inertial  systems,  but r a the r  complete operation 
of some complex mixed sys t em which includes "aiding" devices that supply 
additional guidance information. In general ,  these sys t ems  can  no longer 
be considered autonomous. 

When we discussed additional 
information on the coordinates X I ,  x2 we tacitly implied that the system was 
linked up to the outside world. 
over  the radio, say. 

Furthermore,  we have s o  far dealt with 

This  is no 

One m o r e  point should be borne in mind. 

The additional information was obtained 
There  are, however, sou rces  of information which do 
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not r equ i r e  communication with the outside world. 
r ema ins  autonomous and may even be regarded a s  purely iner t ia l .  

As an example, consider the motion of a ship in the ocean. To  find i t s  
position in the coorclinate sys t em fixed to the Earth,  and hence in the Oc:l;-;j 

axes  ( the motion of the Earth relative to these axes  i s  known), it suffices to 
specify two coordinztes on the surface of the Earth,  the geographical latitude 
and longitude, s ay .  The third coordinate - the distance of the ship from the 
Ea r th ' s  cen te r  - is a function of the other  two coordinates .  If, however, 
the system m e a s u r e s  some  other  coordinates X I ,  x - ,  50, such that the level 
ellipsoid does not coincide with any of the coordinate su r faces  

In this case the sys t em 

X I  = const. lzL = const. x j =  const. ( 3 . 2 )  

the equation of the level ellipsoid will provide a relation of the form ( 2 . 1 )  
among these coordinates.  
a s  to make use of the information on the figure of the Earth,  c lose  to which 
the ship moves.  
the system, and it can be reduced to a two-dimensional sys t em.  At the 
s a m e  time, the sys t em rema ins  autonomous and purely iner t ia l .  

move so that i t s  altitude above the Ea r th ' s  su r f ace  is a known functian of 
t ime.  The iner t ia l  :system also r ema ins  autonomous. Finally, if the 
variation of the altitude with t ime is not known in advance, but the altitude 
can be autonomously measured in the cour se  of motion ( e .g . ,  with a baro- 
metr ic  a l t imeter) ,  the mixed sys t em comprising the iner t ia l  sys t em and the 
al t imeter  is again aiitonomous. 

approximate t ra jectory of the object or the equation of the surface near  
which i t  moves be known. This  information can be s e d  to aid the navigation 
sys t em.  Indeed, s o m e  t e r m s  in the ideal operation equations of the sys t em 
may prove to be sma l l  compared to other  t e r m s .  They can  therefore  e i ther  
be omitted or formed into functions of t ime  using the approximate values of 
the pa rame te r s  which specify the motion of the object. 
corresponding t e r m s  then drop out f rom among the homogeneous e r r o r  
equations. The  right-hand s ides  now contain differences between their  t rue 
and approximate values.  
functions of t ime in the s e n s e  that they can  be specified in s o m e  way during 
the analysis  of erro:: equations. 

cient for omitting them f rom the idealoperationequations. We must  es t imate  
the direct  e r r o r  that: the omission of each par t icular  t e r m  introduces.  
the result ing e r r o r  LS substantially l e s s  than the sys t em tolerance,  or any- 
how substantially less than the instrumental  e r r o r s ,  the,corresponding t e r m  
of the ideal operation equations may be  dropped out. It may prove, however, 
that none of the t e rn i s  enter ing the position or orientation equations gives a 
sma l l  e r r o r  when omitted, but the variations of s o m e  t e r m s  a r e  signifi- 
cantly less than the instrumental  e r r o r s .  In this case, the e r r o r  equations 
can be considerably simplified by omitting the variations of these t e r m s ,  

Note that the argument  of this sect ion concerning the u s e  of additional 
guidance information shows that the change in the s t r u c t u r e  of e r r o r  
equations always has  one common property,  namely ce r t a in  t e r m s  d rop  out 
f rom the homogeneous e r r o r  equations, while no new t e r m s  a r e  added. In 

The inertial  sys t em can therefore be so  designed 

One of the var iables  can be eliminated f rom the equation of 

The above example can be developed somewhat fur ther .  Let the object 

This  example naturally leads to m o r e  general  considerations.  Let the 

Variations of the 

These  differences can be regarded a s  known 

Smallness  of s0rr.e t e r m s  compared to other  t e r m s  i s  obviously insuffi- 

If 
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the present chapter we will consider such c a s e s  only. Naturally, the 
additional information can  be put to work in such a way that the e r r o r  
equations do acquire  new t e rms ,  which do not en te r  the e r r o r  equations of 
purely iner t ia l  sys t ems .  
chapters .  

chapter i s  concerned with the analysis  of various effects ar is ing in s y s t e m s  
with additional guidance information in the fo rm of relation ( 2 . 1 )  among the 
object coordinates.  

f rom additional information on the object 's  distance f rom the surface of the 
Earth.  The s implest  relation is that which expres ses  the distance r of the 
object f rom the Ea r th ' s  center  as a function of t ime. This  is not a signifi- 
cant res t r ic t ion in our  analysis,  while on the other  hand i t  leads to a number 
of interesting and valuable effects which cannot be real ized by other methods.  

The par t icular  choice of the distance r is traceable to the fact that w e  
are dealing with the operation of inertial  sys t ems  in the gravitational field 
of the Earth,  which i s  near ly  spherical .  I ts  propert ies  are determined 
mainly by the distance of the object f rom the Ea r th ' s  center .  
the analysis of e r r o r  equations has  established that the most  dangerous 
conflict with functional stabil i ty a r i s e s  when the inertial  sys t em itself i s  
required to measu re  the distance r .  The t e r m s  of idealoperationequations 
using the r measured by the inertial  system itself a r e  the ones responsible 
for  the rapidly growing exponential and power functions of t ime in the 
solutions of the e r r o r  equations. 

f rom the Earth 's  surface largely reduces these difficulties. 

Analysis of these c a s e s  is deferred until l a t e r  

The main problem to be considered in the following sections of this 

W e  will mainly concentrate on the c a s e  when this relation is recovered 

Fur the rmore ,  

The use  of alternative sou rces  of guidance information for  the distance 

§ 2.2. 
EQUATIONS FOR INERTIAL SYSTEMS WITH 
ALTIMETER CORRECTION 

IDEAL OPERATION EQUATIONS AND ERROR 

2.2.1. Three-accelerometer  system 

Let the distance between the moving object and the surface of the level 
ellipsoid, i.e., the altitude h above ocean level, be known. 
then 

F r o m E q s . ( l . a a )  

r=&e:sin'v'+h)z cas2rp'+[ fld* 'p' + q2 sin2pf. (2.3) Q ( -ee2)  

Specifying the altitude h i s  thus equivalent to specifying the distance r 
f r o m  the Ea r th ' s  center  as a function of the geographical latitude 9'. 

Consider an iner t ia l  navigation system in which al l  the three accelero-  
m e t e r s  have been retained but the spherical  component of the Ea r th ' s  gravi-  
tational f ield entering the ideal operation equations is formed using Eq. (2.3). 

The ideal operation equations for  this system a r e  essentially s imi l a r  to  the 
ideal operation equations of autonomous inertial  sys t ems  listed in  S 1 .I. They 
are only supplemented by Eq. (2.3) and appropriately chosen relations 
expressing cp' in t e r m s  of the coordinates that the system measures .  Thus, 
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to Eqs.  (1.36), (1.38)-(1.40) wre add Eq.  ( 2 . 3 )  and the third equality from 
i 1.8a) 

Z ;  = [ar  -(r,;;+ + x-<,p r<;, - - prddfeq: 11 (it +L’ (0).  rl 

t 

% I  = j zr d t  - + % I  (0).  
(2 .8)  

(2.10) 

If the r obtained f rom Eq. ( 2 . 3 )  is used in the ideal operation equations only 
for  forming the ra t io  br,r3 (and it i s  with this par t icular  c a s e  that w e  a r e  
concerned here) ,  only the last  t e r m  in the left-hand s ide  of Eq.  ( 2 . 1 0 )  i s  
affected, a s  it contains the factor  

(2.11) 
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This  expression now .takes the form 

6 (  -) 1 = - 36r, 
r3 r' 

and 
Ar=CAh+dy_&$.  

dh * 
where the derivatives $. and dr a r e  evaluated using (2.3).  * 

Since e i s  small ,  Eq. (2.3) can be approximately written as 

(2.12) 

(2.13) 

r = a + h --ue2sinzcp', 1 (2.14) 
2 

whence 

Ar = A h  - ae'sinrp'cosrp'&p' (2.15) 

tion of Eq. (2.10), which i s  now used as  the s tar t ing equation, w e  ignored 
the variation of the nonspherical field component. 
a contribution proportional to e20x, e26y. e26z.  
t e r m  in Eq.  (2.15) thus can  a l so  be ignored. 

ae2&p' i s  of the s a m e  o rde r  of smal lness  as e26x.  e26y ,  e26z. In the der iva-  

This  variation a l so  gives 
To be consistent, the second 

In view of the preceding, we obtain f rom Eq. (2.10) 
d?Or +e = An -Am x E _ _  d (A,,, x r )  + - 3vr Ar 

( 2 . 1 5a) 

r' 1 dtd r3  dt dt 

(Ar = A h ) .  
where h h  is the a l t imeter  e r r o r .  

ing along r ,  gives 
Eq. (2.15a) projected onto the co-moving axes x y z ,  with the axis  z point- 

bX + y- - 0 2  - 0; \ 6x + (op,, - io*) 6y - r3 Y 

- 2u), 6 j  + ( 6 ) , 0 ,  + ;Iy) 62 + 2 0 ,  6; = 

= Anx - r Amy - 2; A m y  - ro ,  Aniz - rwZ im,. 

6y + ( f - 0: - "1 1 6y + - &*) 6% - 

- 20,n.i + (OY0, + 0,) 6x + 20,6X = (2.16) 
= A n y f 2 ; h m , f r h m , - r r o y ~ n r ,  -rcozAmy, 

6Z + (3 -0: - 61;) 62 +(0,0, - &),)bx - 

- 26)y 6X + (O*wy + ix) by + 20,64 = 
3~ Ar =An, + 2r ( o , J m ,  + oy Amyi +7 

(Ar  = A h ) .  

The second group of e r r o r  equations (1.96), Eqs.  (1.97), (1.116), and the 
ensuing relations do not change. 

2.2.2.  Two-accelerometer sys tem 

If the altitude h is known, two accelerometers ,  as we have noted above, 
are quite sufficient for  sys tem operation. 
that a relation of the form (2.1) is available, so  that one of the three coordi- 
nates  of the object can be expressed in  t e r m s  of the other  two. TWO accele-  
rome te r s  are c lear ly  sufficient to measu re  the two independent coordinates. 

Indeed, knowledge of h implies 
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T h e  most  na tura l  .xpproach i a  that using two acce le romete r s  in a plane 
which i s  c lose  to the tangent plane to the sur face  12 =const ,  e.g., s y s t e m s  
1.vith two acce le romete r s  a r r anged  in the plane of the geocentric horizon. 

Suppose the s y s t e m  m e a s u r e s  the Car t e s i an  coordinates q. c .  Let the 
ax is  z of the unperturbed platform coincide with the direction of the rad ius  
vector r ,  and let  the acce le romete r s  n x .  n y  be aligned along the a x e s  x. p of 
the platform. The ideal operation equations of the sys t em are then obtained 
f rom the equations of the autonomous iner t ia l  sys t em (1.36),  (1 .38) ,  (1 .39)  in 
the following way. 
dropped out .  In the .c and projections w e  take x = y =  9. z = r  , whichgives 

T h e  projections of Eqs .  (1.36) onto the ax is  z are 

* 

1 

i = 1 ( n  - m,,v2 - m 2' -+ gxj dt  + z+$ 
' Y  

(2.17) 

The  vector equaticns (2.38) are projected on  all  the  th ree  axes, X ,  J . Z .  W e  
thus obtain scalar equations for  the direction cos ines  &,: 

r 

P.t ! [ a ~ ~ ( m , - u r ) - B ~ 3 ( m y - ~ " ) J  dt-VP':,* 

(2.18) 

In these  equations m,, m y  are calculated according to the third and fourth 
m, i s  a rb i t r a ry ,  being determined by the orientation of equal i t ies  in (2.17). 

the axes  x. y in the plane perpendicular to r .  Now, in (2.18), 

u, =up,,. u y  = up,, UL = upa. (2.19) 

Eqs .  (1.39) remain  valid. 
:~ 11. t defined by the equal i t ies  

Using these  equations w e  find the coordinates 

: = p z 3 r .  q=p2Jr+ ;=Pur.  (2.20) 

The  projections g x ,  sy entering the integrands in  the f i r s t  two equations 
in 12.17) are found from 

(2 .21)  

E =€(:. q. 5,. I 
Eqs .  (2.17)--12.21) are supplemented with Eqs .  (2.3), (2 .4) .  Now, if a 

stcihle platform i s  the main  element  and the xy= axes are or ien ted  relat ive 
to this  platform, we caIcu!ate the direction cos ines  uti between the platform 
axes  and the axes x. j .  z .  To this  end w e  use  the m a t r i x  (1.7) of direction 
cos ines  between the a x e s  t,. q. Z and :,. v ~ .  5.. T h e  la t ter ,  in par t icular ,  
may coincide x i t h  the s tab le  platform a x e s .  If, on the o the r  hand, the 
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sys t em uses  a controlled gyroframe, the control torques a r e  formed i n  
accordance with Eqs .  (1.42): 

.Mi = - HLnix ,  = H , m V ,  ,\I; -- - %m,. (2.22) 

In the case  of spherical  curvil inear coordinates, the ideal operation equa- 
tions of a two-accelerometer sys tem can be a l so  obtained from Eqs .  ( I  .54)- 
(1.58) for  autonomous sys t ems .  For orthogonal sphericalcoordinates w e  may 
clear ly  s t a r t  a lso with Eqs.  (1.61), (1.55), (1.57), (1.62) or (1.67), (1.69), 
(1.70), (1.64), (1.42). In these equations we only have to drop out those 
relations which determine x l : = r  and in the other equations inser t  for x1 i t s  
expression from Eq. (2.3). Moreover, an  analog of Eq. (2.4) should be 
added, which r e l a t e s  the curvil inear spherical  coordinates x l ,  nI to the 
geographical latitude q' entering Eq. (2.3). 

equations, say: 
For orthodromic coordinates, Eqs .  (1.81) a r e  replaced by the following 

(2.23) 

To simplify the notation, the co-moving geocentric axes  a r e  designated 
x, y ,  z, and not x3. y,. z3 a s  in Eqs.  (1.81). The las t  two equalities in (2.23) 
a r e  equivalent to (2.3)-(2.5). The function gr. is the projection of the 
Earth 's  gravitational acceleration along the tangent to the geocentric 
meridian.  

Eqs .  (2.23) if we take 

This function is defined by the first equation in (1.27) 
The ideal operation equations in  geocentric coordinates a r e  obtained from. 

(2.24) 

56 



(2.351 

We have so far discussed the ideal operation equations of sys t ems  with two 
acce le romete r s  in t h i  plane of the geocentric horizon (no rma l  to the radius-  
vector r ) .  The acce le romete r s  may naturally be aligned in the plane of the 
geographical horizon too (tangent to the su r face  h = c o n s t ) .  The s implest  
arrangement  of this kind i s  a sys t em measuring the geographical coordinates 
which u s e s  a controlled gyrofrarne with the x and y axes directed to the 
points of the compass .  Since the a l t ime te r  readtng h i s  one of the coordi-  
nates i n  this ca se ,  the corresponding ideal operation equations are obtained 
from Eqs.  (1.91), omitting the third and the fourth equality, which give 
and h . 
s c r i p t s  to x ,  y ,  2, w ?  obtain the following set of equations: 

Supplementing this sys t em with Eqs .  (1 .13)  and changing the sub-  

(2 .26 )  
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6;+j+---z-q Y ax+ ( X Y  0)  0 -;;,)ay-2wzaj)= 

-- - Ar ( ( f ix~, + GY) - ? A h y  + Anx - rAmy - 
- 2; Am, - ro,Am, - r w z  Amx.  

a; + (+-4 -a;) ay +(ayw, + &*)ax + 2w, a i  = 

= Ar (b,, - opZ) + 2&, + An, + 2; Am, + 
+ r A m ,  - ray  Amz - ro, Am,. . 

(2.26) 

To find the difference ip'--'p which en ters  the expression for  gy w e  may 
use Eq. (1.15), which is a consequence of the last  two relations in  (2.26). 

Let u s  der ive the equations of e r r o r s  for systems with two accelero-  
me te r s  which in unperturbed s ta te  lie in the plane of the geocentric horizon. 

The f i r s t  group of e r r o r  equations projected onto the co-moving axes x y z ,  
with the axis  z directed along the geocentric ver t ical  (along the vector r ) ,  
is c lear ly  derived direct ly  f rom Eqs .  (2.16).  To this end, w e  drop out the 
third equation in (2.16) and in the f i r s t  two wri te  

(2.27) hz = . i r  ( = A h ) .  

(2.28) 

in the f i r s t  two equations in (2.16). 

(together with the squares  of 6.z and h r ) .  
This  equality is valid for  smal l  ax3 b y ,  when their  squares  are ignorable 

Indeed, f rom the identity 

x*+ y*+ z2= r2 (2.29) 

we have ( in  the unperturbed s ta te  x = y = O ,  z = r )  

+ (by)* + (6.z)' + 2r 6.z = 2r hr + (Arj2.  (2.30) 

whence, omitting the quadratic te rms ,  we get b t = A r .  

replaced by the nonlinear sys tem comprising the f i r s t  two equations in (  2.16) 
and Eq. (2.30): 

If we a r e  interested in higher approximations, Eqs. (2.28) should be 

(2.31) 

a i  + (3- 0; - a:) ax +ppY - ;*)by- 

- 20, a; + (W,O, + ;,) az + 2wY 62 = 

= An,  - rAm,  - 2; Am, - ro,  A m z  - rwz Am,, 

a i  + (3 - 0; - 0;) ay + pywz - &,) a2 - 
- 20, a; + (wYw, + &)ax + 20, ax = 

(ax)> + (ay)? + (6z)2 + 2r 6z = 2r Ar + ( b y ' ,  
==Any + 2; Amx + rhmx - rwy Am, - rw, Am,. 

It can  be shown that Eqs. (2.28) a l so  constitute the f i r s t  group of e r r o r  
equations for sys tems with two acce lerometers  in the plane of the geographical 
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( a n d  not geocentric) horizon. This  follows f r o m  the fact  that the corresponding 
ideal operationequations differ in te rms  of f i r s t  o r d e r  of s m a l l n e s s  (containing 
3 factor  &) .  
o f  second o rde r ,  and consequently coincide to f i r s t  approximation. 

two-accelerometer  s:.-stems. The  second group of e r ro r  equations (1.961, 
Eqs.  (1.97) and ( 2 . 1 1 6 )  for the total position and orientation errors (and a l l  
the rc.lations der ived f rom these  equations) remain  as before.  

In conclusion of this  sect ion let u s  consider  a n  important property of 
Eqs .  ( 2 . 2 8 3  o r  (2.31). These  equations are invariaiit under rotat ionofthe sy: 
a x e s  through an  angle i t  around the a x i s  z ,  i .e. ,  they a re  invariant under the 
rotation group of the axis = .  
t'rc1n.i the a r b i t r a r y  choice of c , ) ; = m g  inidealoperat ionequat ions (2.17), (2.18), 
( 2 . 2 2 ) .  It can  be also established bydirect  calculations, making the following 
substitution of var iables  in Eqs .  (2 .28) ,  (2.31): 

Therefore ,  the variational equations of errors differ in t e r m s  

Eqs.  (2.28) o r  Eqs.  (2.31) consti tute the f i r s t  group of e r ro r  equations for 

This  property of Eqs.  (2.28) follows direct ly  

(2.32) 

Expressing the  variations h.~ .  Oy in Eqs .  (2.28) in t e r m s  of ~hx' by' from 
(2 .321 ,  we multiply the f i r s t  equation by cosi?, the second by s i n e ,  and add 
the tivo equations. 
equation in ( 2 . 2 8 ) ,  the- only difference being that bx.  by. ( + ) A ,  o ) y ,   IO^, A n t ,  A,!,, Am,r, 
\m,,. Am: have been replaced by t k ' ,  A ) , ' ,  U.I~ , o ) ~  . wZ , -In,., \ n y , .  \m,? . Am, . Am,,. 

, 

T h e  result ing equation is identical in f o r m  to the f i r s t  

are expressed  in t e r m s  of (4),z and by the relat ions 
f i  

(2.33) 

S imi la r  espressi0r .s  are wri t ten for A n t ,  \n, in t e r m s  of An.r. Artl and for 
\m,r , Ant,..  in t e r m s  of A n t , .  A n t , .  Finally, 

( * j z '  -.= U J ~  + B, .Im,. = .\mz, f 2.33a) 

L'urther multiplyin,: the f i r s t  equation in (2.28) ( a f t e r  substituting from 
(2.32)) by -sin @ and t ' ie second by cosit, and adding the two equations, we 
obtain a n  equation which differs from thesecond equation in (2.28) only in that 
the subsc r ip t s  x ,  y, z have been replaced by x', y', z'.  
validity of o u r  proposition f o r  E q s .  (2.31). s ince in this  case evidently 

T h i s  a lso proves the 

hr '  LX 02. 12.34) 

The  invariance of Eqs.  (2.28), ( 2 . 3 1 )  under  rotations of the s y z  axes about 
the geocentric ve r t i ca l  ( the  axis : ) permi ts  choosing the orientation of the 
a x e s  s. y in the most  convenient way. 
numerous possible ori.entations of the  CY^ axes: 1) one of the horizontalaxes,  
the .v axis,  say,  is coplanar with the absolute velocity vector  d r , d t ;  2) the 
orientation of the axes x. y in the horizontal  plane is such  that c.)2 = 0. 

take the f o r m  

\Ve will mention only two of the 

In case 1 we shoulc take o . ~ =  0 in  Eqs .  (2.28), (2.31). Eqs .  (2.28) thus 

I 'I 11 I , bw + ( -$ - 0; - eJ; 1 6.C - hg - b2 b)* = 
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a i  $- (f - 6);) ax + oxoy ay = 

ay f ($-o;)ay+O*Wy6X= 

- - --hrdy-2A;oy+ Anx - r A m y - 2 i  Am,--ro, A ~ I ~ ,  

= ArGX + 2&o, + Any + 2Am,; + rAmx-roy Am,. , 

(2.36) 

§ 2.3. 
THE FIRST GROUP OF ERROR EQUATIONS FOR 
TWO-ACCELEROMETER SYSTEMS 

STABILITY ANALYSIS AND INTEGRATION OF 

2.3.1. 
with constant coefficients 

Stability analysis in cases  leading to equations 

A s  we have noted before, the second group of e r r o r  equations of two- 
acce lerometer  sys tems i s  no different f rom the corresponding equations for  
autonomous inertial  sys tems and the resu l t s  of 1.3.1 therefore remain valid. 
The main difference between autonomous inertial  sys tems and two-accelero- 
meter  sys tems i s  t raceable  to the f i r s t  group of e r r o r  equations, the 
analysis of which is ou r  immediate task.  

i.e., variational equations (2.28). The nonlinear equations (2.31) will be 
t reated in the next chapter, after we have established the analogy between 
two-accelerometer inertial  sys tems and Schuler tuned sys tems.  This  
analogy will great ly  simplify the analysis of the nonlinear equations (2.31).  

In the general  ca se  of a rb i t r a ry  motion, Eqs. (2.28) constitute a fourth- 
o rde r  sys tem of differential equations with variable coefficients, which a r e  
e i ther  determinate  o r  random functions of time. General  analysis of 
Eqs.  (2.28) meets  with insurmountable mathematical  difficulties. Thus, even 
the simple case  of motion along the a r c  of a fixed-orientation great  c i rc le  
leads to a Mathieu-Hill equation if variable velocity is permitted. 

Eqs.  (2.28) can be comprehensively analyzed only in those cases  when 
they a r e  reducible to equations with constant coefficients and for  Keplerian 
motion. 
in three cases .  The f i r s t  ca se  is that of a stationary object in the O,E,q& 
f rame.  This  case  i s  observed, say, when an object moves along the paral le l  
against the Ea r th ' s  spin with a velocity equal to the c i rcu lar  velocity of the 
points on the Ear th ' s  surface.  In this case,  w e  take ox = 0, oy = 0,  oz = 0 in 
Eqs. (2.28) and wri te  

In the present chapter we will only consider first-approximation equations, 

Eqs.  (2.28) reduce to equations with constant coefficients at least  

(2.37) ax + a', 6% = Anx - rAmy. 

a j  + og6y = hy + rAm,. 
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a;= + = const. (2.38) 

The second c a s e  is motion with constant velocity along the a r c  of a fixed 
gryat c i r c l e .  The equations of e r r o r s  for  this c a s e  a r e  obtained from 
I+:qs. (2.35) if c8iz = 0, or f rom Eqs.  (2.36) if w , =  0. This  gives 

(2.39) 

( 2  *-IO) 

Finally, Eqs .  (2.28) a r e  reduced to equations with constant coefficients 
i f  the object moves with constant velocity a t  a constant distance f rom the 
Earth’s  cen te r  with s teady circulation. The  equations for  this c a s e  a r e  
obtained from Eqs.  ( 2 . 3 5 )  where we should take u)* =cons t ,  i i / r ’ = W ; =  const, 
1.1 = ZP r = const, which gives 

I &rT(cq;-a~ Y -W2 4 bx-29Oz6j,= 

(2.11) 

A part icular  case a r e  the equations of a n  object moving with constant 
velocity along a paral le l .  
and 12.37) a r e  par t icular  c a s e s  of Eqs .  ( 2 . 4 1 ) .  

The homogeneous equations (2.37)  a r e  equations of harmonic oscil lations 
w i t h  Schuler’s frequency, i.e., the motion in this  c a s e  i s  nonasymptotically 
s table .  Similarly,  the homogeneous equations (2.39) a r e  a l s o  equations of 
harmonic oscil lations.  However, the frequencies of these oscil lations a r e  
different i n  the plane of motion of the object and in the normal  plane through 
the vector r .  In the plane of motion the harmonic frequency i s  I E, and 
i n  the normal  plane i t  i s  equal to Schuler’s  frequency GI,,. Eqs .  (2.39) reveal 
nonnsyniptotic stabil i ty for 

Eqs .  (2.41) a r e  quite general ,  so that Eqs.  (2.39) 

a; < W;. (2.43) 

i.e., a t  velocit ies l e s s  than the c i r cu la r  velocity of the object.  

s epa ra t ed .  
Consider the homogeneous sys t em (2.41). Here  the equations a r e  not 

The cha rac t e r i s t i c  equation of this sys t em is biquadratic: 

p‘ + pz ( 2 u ) ~ - ” ~  Y +- 20;) + ((9;- w;, (0:; - o? -“f) = 0.  (2 .49 )  

For  (nonasymptotic) stability, the roo t s  of the cha rac t e r i s t i c  equation 
(2.43) should be e i the r  z e r o  o r  imaginary,  and multiple roots  of the cha rac -  
ter is t ic  equation should correspond to l inear  e lementary d iv i so r s  of the 
cha rac t e r i s t i c  polyncmial of Eqs.  (2.11).  Now, Eq. (2.43) can  have z e r o  or 
pure imaginary roots  only if the roots of the quadratic 

T <ll2dJ$ - Wf + 2 4 )  + (W;-W;)(.,‘ - W ?  Y Z  - a?) = 0 (2.44) 

a r e  r e a l  and nonpositive. This  is evidentiy so if the coefficients of Eq. (2.44) 

61 



62 



t h .  cc,rrrsponding elementary divisors  of t he  character is t ic  polynomial of 
E q s .  f 2 . 4 1 )  a r e  l inear .  

different: 
On the segment of the straight line # * t 2  = 0, t i  .-' (., the imaginary roots a r e  

~. 

p : , : =  rJ..*,. 11 . =  x j \  v b ; - i , b ! , .  r2.3'1 

1'. . -7 z j , , ) , ,  p ;  : L IJ. 12.531 

At the point ( $ , t i  = 0, I U : , = ~ I ) : )  ..re have 

rrtici the dcbuhle z e r o  root corresponds to a quadratic e lementary divisor .  
On the segment of the Iirle (41: = 0,  0 .: 4 < y' the imaginary roots are  

cliff e re  n t :  

11 ! := i- j i w  5 o):I. 12,541 

A t  t h e  point I = 0,  l f (  = I,.') the roots a r e  equal: 

pi. 2 = u,  p 3 ,  + = i: ?j'J,. i 2 . 5 5 ;  

:in(! tht; double z e r o  root corresponds to 3 l inear e lementary divisor .  
On t h e  line W :  - d -- 4 = 0, bttween the points ( 0 ,  y,) and (no:, , 01, we have 

( 2 . 5 6 )  

" I  

here the z e r o  root has  a quadratic e lementary divisor .  
On the r ay  #*):, = 0,  <oj > ( e ) , <  the imaginary roots  a r e  different: 

p , . !  3 5 j f + . )  7 w Z )  

O n  the segment $5); = wj,  0 < w< < 4 d i  the imaginary roois 

p ! ,  = 2 j 1 ' 40); - d 
pre supplemented by the z e r o  root 

p ,  , = 0 

..i;ith a quadratic e lementary divisor .  
At the point (w: = t.~:,. I.,;= 4qb):,) we have a quadruple z e r o  root 

Pi. 1 :. t = u. 

which corresponds to a quadratic e lementary divisor .  

( 2 . 5 7 )  

( 2 . 5 8 )  

(2 .39 )  

(2 .60 )  

Finally, along the branch of the hyperbola (2.46) where ?q<& < & I - ,  w e  
have multiple roots 

(2 .61)  

with quadratic elemer.tary divisors .  
.A different approach to the stabil i ty of the homogeneous equations (2 .41)  

is also possible. 
analyzing Eqs.  ( 1 . 1 3 2 ) ,  a s  describing the motion of a unit point m a s s  about 
the s t a t e  of equilibrium 

We can interpret  these equations, a s  in Chapter 1 when 

b.u=0. 6 p =  0 (2.62)  

under the combined action of potential and gyroscopic fo rces .  
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(;h. 2.  AL'I IhlETER C.ORRE(:TION 

The potential force function in this ca se  i s  

and the gyroscopic forces  a r e  

- 20, by. 2(0,&. (2.64) 

The equilibrium (2.62) in the field of potential forces  alone is stable if 
the force function (2.63) has  a n  isolated maximum at  the point of equilibrium, 
which i s  evidently so when inequality (2.49) is satisfied.  According to 
Kelvin's theorem, the sys tem in this case  will remain  stable in the region 
(2.49) when the gyroscopic forces  a r e  added too.*' 

Inequality (2.49) descr ibes  only one of the two stabil i ty regions derived 
in the preceding analysis of the character is t ic  equation (2.43).  
stabil i ty region is ent i re ly  associated with gyroscopic forces  (2.64), s ince 
it corresponds to a region where, in virtue of the second inequality in (2.45), 
the degree of instability in the potential field alone is even. 

It i s  a well-known fact that if a system unstable in a poter.tia1 force field 
i s  stabilized by gyroscopic forces  ( i t s  degree of instability being even), the 
stabil i ty i s  eventually destroyed by the total internal dissipation forces;  
gyroscopic stabil i ty i s  thus transient,  unlike stabilization by poknt ia l  forces ,  
which i s  secular  and is actually enhanced by the internal dissipation forces .  

Introducing in homogeneous equations (2.41) the total internal dissipation 
with Rayleigh's dispers ion function 

The second 

R = 5 [(any + (6yy1. (2.65) 

where E i s  some positive constant, we obtain the homogeneous equations in 
the form 

(2.66) 

If the dissipation i s  small ,  so that only t e rms  l inear  in E need beretained 
in the character is t ic  equation of (2.66), we have 

p4 + 2 ~ p 3  + p2 (20; - O; + 2 4  + PE (2~9; - - 2to3 + 
+ (3 - "t) (Oi - 0 2  Y Z  - d) = 0. (2.67) 

The f o r m  of the coefficients of Eq.  (2.67) suggests that outside the region 

(di - - 6): > 0 (2.68) 

a t  least  one of them is negative. 

have positive real  par ts ,  and this implies instability outside the region(2.68) 
due to the detr imental  effect of the internal dissipation forces .  The Hurwitz 

Hurwitz's necessary  conditions are thus broken, the roots  of Eq. (2.67) 

*See C h e t  a e v ,  N.G. Ustoichivost' dvizheniya (Stability of Motion). - Gostekhizdat. 1955. 
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inequalities in this c a s e  are 

(2.68a) 

I t  follows that in t i e  region 12.68) the sys t em i s  asvmptotically stabilized 
by the internal dissiFation forces .  

Sometimes regions of gyroscopic stabil i ty are ignored altogether, s ince  
i n  any actual  displacement a mater ia l  sys t em is  presumably always exposed 
t o  t h e  action of dissipative forces .  It should be noted, however, that if the 
dissipative forces  are sma l l  and the sys t em functions but for a limited time, 
the gyroscopic stabil,.ty need not be ent i re ly  broken. Also note that a r b i t r a r y  
introduction of dissipative forces  in stability analysis  may lead to grave  
e r r o r s .  An educational example will be given in S2.4 below. 

Lye have ca r r i ed  out a stabil i ty analysis  using Eqs .  ( 2 . 2 8 ) .  These  are 
f i r s t  -approximation equations, however. T h e  charac te r  ist ic equation of 
(2.28) has  z e r o  and pure imaginary roots  in the stabil i ty regions.  This  i s  
a c r i t i ca l  c a s e  and therefore, by Lyapunov's theorems, the first-approxima- 
tion equations do not Drovide conclusive information on  stabil i ty.  The  above 
conditions a r e  only nocessary .  To obtain the sufficient conditions, the 
nonlinear equations ( 2  3 1 )  should be analyzed. 
until the next chapter,, when we will examine the analogy bitween two- 
acce lerometer  iner t ia l  sys t ems  and Schuler tuned sys t ems .  

This analysis  i s  defer red  

2 . 3 . 2 .  Solution of the f i r s t  group of e r r o r  equations in 
c a s e s  which lead to equations with constant coefficients 

The different c a s e s  when the error  equations of a two-accelerometer 
iner t ia l  sys t em reduce to equations with constant coefficients w e r e  descr ibed  
in the preceding s e c t t m .  For a s ta t ionary object in the O,;qsZ. axes, the 
first group of error equations (2 .28)  reduces  to Eqs.  (2 .37) .  
is c lear ly  given by 

T h e i r  solution 

(2.69) 

For constant instrumental  errors, these express ions  take the form 

(2.70) 
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Ch. 2. ALTIMETER CORFE(:TION 

Comparison of (2.69), (2.70) with the f i r s t  two relations in (1.140), (1.141) 
shows that Eqs. (2.69) ,  (2.70) for  6x, by coincide with the an;rlogous expres-  
s ions for  autonomous inertial  sys t ems .  

the a r c  of a fixed-orientation g rea t  c i r c l e  on a sphere of constant radius 
around the Earth.  

Now consider the c a s e  of an object moving with constant velocity along 

Eqs. (2.28) a r e  then replaced by Eqs. (2.39), which can 
be written in the form 

I 6x + (d, - o;)6x = Anx - Am,r - 2A;o,, 

6 )  + 6y = An, + Ahxr - Amxrwy. 

Eqs. (2.28) have thus separated into two second-order 
solution is 

ax nnu Cos vt + $ sln vt + 

(2.71) 

equations. The i r  

(2 .72 )  

For constant instrumental  e r r o r s  I n x ,  Any, Am,, Am,, AmR and constant 
position e r r o r s  Ar (inaccuracy in the information on the distance from the 
Earth 's  center),  the expressions for  bx ,  6y take the fo rm 

For sma l l  ( I ) y r  Eqs.  (2.72) ,  (2.73) are not great ly  different f rom 

Another interesting limiting c a s e  of solutions (2.72), (2.73) is provided 
(2 .69 ) ,  (2.70).  

by the motion of a satell i te in c i r cu la r  orbit, when 

If 0+,=0, Eqs. (2.72), (2.73) reduce to Eqs. (2.69), (2.70). 

Wy = 610. (2.74) 

The solution of this ca se  can be obtained f rom Eqs. (2.72), (2.73) by taking 
the l imit  ( L ) , + O ~  (compare the derivation of (1.152) f rom (1.149)). Taking the 
limit, we obtain 

bx = 6x0 + 6xot + 
f 

+ 5 (Anx - r A;, - 204;) (t - T) dT, 
0 

a+ 6y =6yOcoso,$ + - sin od f 
0 0  

t +& (Any + r Am, - Am,rq,) sin o, ( t  - T) dT. 
0 

(2 .?5) 
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F o r  constant In,, I n , .  A m x +  l m y 5  Amz. A r ,  w e  have 

Let us  now consicer  the last  case,  namely the case of Eqs .  (2.41):  

(2.77) I & +(ai -- i t ) ;  - 0:)0.r - 2w, b j =  Anx - r Am, - r(s)z l m r ,  

n j  + (0; -- oji 6y + a i  = 

- _ -  Aro,w,  + A n ,  + r AmI - r w y  Am, - rm, AM,.. 

A s  we have noted previously, this is the c a s e  of uniform circulation of 

In other  words, it corresponds to motion with 
the object over  the surface of a fixed-orientation constant-radius sphe re  
concentric with the Earth.  
constant velocity along the a r c  of a sma l l  c i r c l e  of this sphere.  X particular 
c a s e  of this circulation i s  motion with constant velocity along a parallel .  
The xyr axes  {in whichEqs. (2.77) are written) can be oriented to the points 
of the compass (with the axis  y directed northward), and the components 
I , ) y .  entering this equation take the form 

ut, =~.)cosy ,  ojII = < * a t n # r ,  (2.78) 

where 

Here  I’ is the velocity of the object relative to the Earth,  and ip i s  the 
latitude a t  which the ,object moves. 
reduced, evidently without loss of generality, to motion along the parallel .  

Fu r the r  analysis of this c a s e  will be 

The character is t ic  equation of (2.77) is biquadratic: 

p + + -  (,2l,!; + 2w: - $1 p’ + (w? - w;) I , ’) - w q  = 0. (2.80) 

If (2.49) is satisfied, i.e.,  when 

10; - (?I > 0. (2.81) 

Eqs.  (2.77), as we have shown in the previous section, descr ibe nonasympto- 
tically stable motion. 
two pairs  of pure ima.ginary conjugate roots  

When the above condition is satisfied, Eq. (2.80) has  

P , , ~ =  + J p c .  p , . + =  z j v .  (2.82) 

where 

(2.83) 
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Ch. 2. ALTIMETER CORRECTION 

The general  solution of the homogeneous sys tem (2.77) is thus writ ten in 
the form 

c 
bp - av 

&X = - (bp COS Y t  - uv COS pt)  + 
+ * ( p s i n  vt - vs in  pt)+ 

+ A ( b s i n v t - u s i n p t ) +  bv - ap 

bv -up 

+- (COS pt - cos vt). 

hy = C, (p sin vt - v sin p t )  + 
bp - av 

+ Cr (bv cos lLf - u p  cos vt) + 
bv - ap 

+- (cos lLf - cos vt) + 
C + bp - av (b  sin pf - a sin vt) .  

(2.84) 

In Eqs. (2.84) C,, C,, C,, C, a r e  a rb i t ra ry  constants, which can be inter-  
preted a s  the initial values 6 9 ,  by, &&'. @. 
expressed in t e r m s  of the moduli (2.83) of the roots of the character is t ic  
equation (2.80) and the coefficient of the original system: 

The constants u and b a r e  

(2.85) 

The solution of the inhomogeneous sys tem (2.77) can be obtained from 
(2.84) by variation of the constants C,. C,. C,, C,. It has  the form 

tw = j A [--a s in  p (t- 5 )  + b sin v ( t  - 7)1+ 

+-[cos p ( t  - 7 )  - cosv( t  - 7 ) l /  dr + 
bv - ap 

0 

6x0 + (bp cos vt - UV cos pf) + 
+ *(bs inv t  - usin w)+ 
+ 6 T ( p s i n v t  - v s i n p t ) +  

bv - a& 
ab 6yo 

+ nbJyO (COS pt - cos  vf) ,  b p  - av 

f, by = j{ bv--np ICOS p ( t  - 7 )  - c o s v ( f  - T)\ + 
0 

f2 [bsin p ( t  - 7) - a sinv(t - T)I dr + +- 
+ bv - a p  

+ 2 (b sin pf - a sin vf) + b p  - a v  '@ (p sin ut - vs in  pt) + 
f- 

(bv cos pt - u p  cos vt) + 

6x0 + -(COS pf - cos V f ) .  

(2.86) 
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Here  f , ( ~ ) .  f l i T )  stand f o r  the right-hand s ides  of Eqs .  (2.77), so that 

f, (T) = Anr - r Amy - ro,  Amr - 2Ar,oy 

f ? ( r )  =Any + r Amr - r w ,  Amz - (2.87) ! - r*l)z 1 m y  - Arw w 
Y 2  

Clearly,  for  or = 0, Eqs .  (2.86) reduce to  Eqs. (2.72). T o  prove this, 
note that for  wz = 0 we have f rom (2.83)  

p = w,. v = \'id,; - q. (2.88) 

and f rom (2.85), (2.83) we see that 

lim a=0, ILm b = m .  (2.89) 
u,+o OZ+0 

For idy = 0, substitution of var iab les  (2.32) reduces  Eqs .  (2.77) to 
A reverse substitution of var iab les  makes  i t  possible  to Eqs .  (2.37). 

r ecove r  the solution (2.86) f r o m  (2.69) f o r  CO" = 0. 

motion along the paral le l  is highly cumbersome.  
The  exact solution (2.86) of the error equations of the f i r s t  g roup  f o r  

If we take 

>> w-l. (2.90) 

this  solution can  be grea t ly  simplified. 

this  case: 
F r o m  (2.83) we obtain the following approximate values of p and v in  

Hence, to  f i r s t  approximation, 

(2.91 

(2.92 

Using Eqs. (2.90)-(2.92), we simplify (2.86) and wr i te  it in the f o r m  

+ f 2 s i n  ot (t  - r)] sino, (t  - r)dr + 
+ (6x0 cos o,t + d p  s i n  of) cos a,$ + 

(2.93) 
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For constant instrumental  e r r o r s ,  we obtain the following approximate 
relat ions f rom (2.93), (2.87): 

1 bx = "x (1 - cos o,t cos 0,t )  - 
4 

I Any - brc),oZ - cos 'oat sin IO$ + 6x0 cos oat cos o,t + 
w; 

+ by0 cos wat sin o),t + sin mot cos w,t + 
+ sin o,,t sin o,t. 

00 

by = hn, cos oot sin oxt + 4 
An, - broyo, 

+ (1 - cos wot cos o , t )  + 
a; 

630 a i 0  

+ byo cos o,t cos oat - axo cos oat sin o,t + 
00 0 0  

+ -sino,f C O S O , ~  - --sincaot sinw,t. 

(2 .94)  

2.3.3. 
equations for  Keplerian motion 

Integration of the f i r s t  group of e r r o r  

Eqs.  (2.28) projected onto the orbi ta l  axes  x y z  (with the z axis  pointing 
along r ,  the y axis  normal  to the orbi ta l  plane so that the object i s  seen  to 
move counterclockwise when viewed from the end of this axis) take the form 

I I 
6X+ (+ - 0;) bx = An, - 

- 2; Amy - r Am, - Arc;, - 2 Arwys 

6x1 f If_ by  = An, + 2; Am, + r Am, - rwy ~\mz. 
r3 

(2.95) 

where r and oiY a r e  expressed  by Eqs.  (1.1621, which in the i r  tu rn  a r e  
obtained f rom Eqs.  (1.156). 

The coefficients in Eqs .  (2.95) a r e  var iable .  Moreover,  Eqs .  (2.95), 
unlike Eq. (1.92), a r e  not the var ia t ional  equations of Keplerian motion 
(1.155). 
theorem, as in the solution of Eq. (1.92), the vector equation of e r r o r s  of 
an autonomous inertial  system. However, comparison of Eqs.  (1.92) and 
(2.95) nevertheless  suggests  a method of integration.* 

sca l a r  equations 

Therefore ,  in o rde r  to solve Eqs.  (2.95), we cannot use  Poincar6 's  

The vector  equation (1.92) projected onto the orbi ta l  axes  gives a s e t  of 

a; + (5 - 0;) ax + i Y a z  + 2oY a i  = 

6.i -(f + 0;) 6 2  - J~ ax- 

= An, - 2; Amy - r Amy. (2 .96)  

- 20, & = Anz + 2ro ,  Amy , 

and a separated s c a l a r  equation 

6y ++ by = An, + 2; Am,+ r Am, - my Amz. (2.97) 

* A n d  t e e v ,  V.D. Integration of the equations of errors of an inertial navigation system for Keplenan motion 
of the object. - Prikladnaya Matematika i Mekhanika, Vo1.29, No. 2. 1965. 
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Eqs. !2.96), (2.97) constitute the f i r s t  g roup  of error equations of a n  
autonomous iner t ia l  sys t em fo r  the case of Keplerian motion. Eqs .  (2.96) 
specify the errors in the orb i ta l  plane, and Eq. (2.97) descr ibe  the e r r o r s  
in a plane through the ax is  y a t  right angles  to the orb i ta l  plane. The 
solution of Eqs .  (2.96), (2.97) was  given in 1.3.4.  These  w e r e  Eqs.  f l .166) .  

Comparing Eq. (2.97) with the second equation in (2.95), we note perfect 
identity. 
equality in (1.166), which can  be wri t ten as 

The solution of the second equation in (2.95) i s  therefore  the third 

Here  H ! , .  G ! : .  G,’; are expres sed  by (1.167), (1.169), and x;. .Y; are re la ted  
to hy“, hi” by (1.170). 
readi ly  see that for a c i r cu la r  orbi t ,  when e - 0 ,  v = ~ ~ , , ,  Eq. (2.98) reduces  
to the second relat ion in (2.75).  

From (2.98) we can  now derive a n  approximate express ion  for a sma l l -  
eccentr ic i ty  orb i t  and ‘constant instrumental  errors.  

If the eccentr ic i ty  e’ of the (ell iptical)  orbi t  i s  smal l ,  expansion of the 
f i r s t  th ree  equal i t ies  i:i (1.156) in powers of e ,  retaining only the l inear  
t e rms ,  gives  (substitu,:ing f rom (1.159)) 

Using these express ions  for B i t .  Gi,. GY,. .Y;. x;, we 

. ; i n € = s i n v t ( I  f e c o s v t ) .  

c ~ ? s E = c o s v r - e r i n ’ v t .  J 

Now, from the  four1.h equality in ( I .156) 

r = a ( l  -eeosvtb, 

and hence f rom the fifth equality in (1.162) 

w ! ~  = u = v (  I + 2e cos v t ) .  

(2.99) 

12.100) 

(2.101) 

Therefore  
v = v t  + 2 e s i n v t .  ( 2.102) 

Eq.  (1.167) f o r  L?,,, (ii, contains the functions s in  CJ and c o s  L’. By (2.102) 

i V e  thus have 

B, ,  =. cos vt - e I + sin’ v f ) .  
2 sin 2vt B,, =. s in  vt $- - 

G,, =: - - (s in  vt + 5 sin 2vt 1, v \  s 
G, = - y j ~ ~ ~ s t -  e ( l  + s i n * s t ) l .  

3 ,  
I 

1 

GI:, -- I - e. = 0. G:, = 0, G:~  -- + , 

(2.1 03) 

(2.1 04) 
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Inser t ing (2.104), (2.100), (2.101) in  (2.98) andsee ing  that the ins t rumenta l  
e r r o r s  are constant, we obtain the following express ion  for  by integrating 
and collecting the te rms:  

Airy - av Am, 

y z  

n,n An 

hy = ( 1 - cos Vt)  + 6yO cosvt + 
+ sin vt + e [ + (1 - cos vt  + sin* vt - 

3 - _  vt s i t 1  v t j  + +(cos vt - 1 - sin2vt + 
i - v t s i n v t )  ++(vtcosvt-sinvt)+ 

1 (2.105) +hyO(cosvt-  1 -ssin~vt)+--(-sinvt + s i n v t c o s v t )  . 
For e = O  this equality reduces  to  Eq. (2.76) ( v = q .  a = r ) .  
To obtain the solution of the f i r s t  equation in (2.95), note that the par t ia l  

6,. 

solutions of the homogeneous sys t em (2.96) found in 1.3.4 include the solution 

n x = r ,  b t = Q .  (2.1 06) 

This  i s  readi ly  established by expanding the express ion  (1.160) for  q q .  
Comparing the f i r s t  equation in (2.96) with the f i r s t  equation in (2.95),  we 
see that 

6 X = L  2.1 07) 

i s  a par t icular  solution of the homogeneous equation corresponding to the 
f i r s t  equation in  (2.95). 
The  par t ia l  solution (2.107) i s  henceforth designated b x , , ) .  

This  can  be ver i f ied a l so  by d i rec t  substitution. 

T o  obtain another par t ia l  solution, we use  the Liouville formula 

(2.108) 

which (apar t  f r o m  a constant factor) is equal  to  the Wronskian of theequation 

i; + P l y +  P?Y =U. (2.109) 

In our c a s e  pi = 0 and the Wronskian is constant. Choosing this  constant  
to be unity, we get  

SX,l, h i , * )  -si,,, 6+) = I ,  (2.110) 

where 6x(,,  is the known and 6q2) is the sought par t icular  solution. 
F r o m  (2.110) we get 

(2.111) 

Taking C =  0 we inser t  fo r  6.qIl in (2.111) i t s  express ion  from (2.107). 
Th i s  gives  

6+2) =a r 1 F d t .  a2 (2.112) 

1 2  



(2.114) 

Thus, the genera l  solution of the homogeneous equation corresponding to 
this f i r s t  equation in (2 .95)  i s  

T h e  genera l  solution of the inhomogeneous equation is obtained by 
\,ariation of constants.  
t ime, we obtain the foI.lowing s e t  of l inear  equations for these unknoivns: 

Taking C ,  and C, in Eq. (2.115)  to be  functions of 

(2 .116)  

The determinant of this sys t em i s  the ii-ronskian (2 .110)  and is thus 
equal to unity. F r o m  12.116)  we get 

(2.118) 

( 2  119) 
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Eq. (2.122) shows how the error  amplitude 6.r increases  with t ime. If 
& <<<,.I;, we c l ea r ly  have 

(2.123) 

Let us  now consider  the case of slow motion a t  a constant distance f rom 
The  f i r s t  group of the homogeneous error equations i s  the Earth 's  cen te r .  

writ ten in the form (2.36): 

(2.124) 

ior, o, are related t o  the horizontal  projections ' ~ 1 ~ .  z # ~  of the absolute 
velocity by the equalit ies O,=-- 'L '~ r .  o y = ~ * , ' r .  Clear ly  

ivhere I' is the maximum horizontal speed of the object relatiLre to the Earth,  
and 11 is the angular  rotation \.-elocity of the Earth.  For velocit ies s m a l l  
compared to  the c i r cu la r  velocity, when 

ive c a n  obtain'" effective es t imates  of divergence of the solutions of 
Eq.  (2.124) compared  to the solutions of the equations 

6X + oi6x = 0. 6y + a; 6y = 0. 

Changing o v e r  frorr t to a dimensionless independent var iable  

T = 

we introduce a small  parameter  p defined by the relat ions 

C ' w t + o %  '9, =pc,, "v= pc*, 11 = max ___ - 
% ' %, ma 

Clearly,  

ll<< I .  c:+c,Z.s1. 

Using (2.128), (2.12'3), we wri te  Eqs.  (2.124) in the form 

I 6.r" + i5.r = p?c, (Cy 6x - c, ay). 

by'' + 6p = p2Cr (C, 6y - CY6X), 

where p r imes  denote differentiation with respec t  to r .  

(2.127) 

(2.128) 

(2.129) 

(2.13 0) 

(2.131) 

* n d  r e  e v ,  V.D. .A case of rim11 oscillations of a physwal pendulum with a moving suspension point. - 
P:rkladnaya hlatematika i hleU.anika. V01.00, No.6. 1958. 
E4uations of small oscillations of the Schuler vertical. - Inzhenernyi Zhurnal, Mechanics of Rigid Bodies, 
M.5 .  1366. 

P a r u o n i k o v .  N.A. and L I L K l i g e r .  
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Ch. 2. ALTIhlETER CORRECTION 

One of the courses  open to u s  a t  this s tage i s  the following. W e  rewr i te  
Eqs.  (2.131) in  a slightly different fo rm 

(2.132) I 6 ~ "  + 6.t = PZF, (bx ,  by) ,  b y  + ay = PZF,  ( 6 ~ .  by), 
F ,  = Cy (Cy bx - C, by) ,  
F ,  = C, (C, 6y - Cy 6x)  

and solve them by success ive  approximations. 
given in the form 

The i terat ive relat ions a r e  

where 

(2.133) 

(2.134) 

and the zero  approximation bx,, 6yo is chosen as the solution of the truncated 
equations (2.127). 

Then 

n 
6.y" = P' j F,, ,-I (u) sin (5 - u )  du + 6xo, 

0 

f i ) l n = w 2 I  F y , n - l ( ~ ) s l n ( r - u ) d u + ~ y o .  

Approximations (2.135) are  in fact a modification of P icard ' s  technique 
of successive approximations. 
on the functions F,. F ,  ( these  res t r ic t ions  are general ly  sat isf ied in  practice), 
the approximations are  found to converge. 

When appropriate res t r ic t ions  are imposed 

Without loss  of generality, we may take 

(2.136) 6x0 = 6yo = a cos ad. 

F r o m  (2.135), (2.134). (2.132), using the theorem of the mean value and seeing 
that C:+ czd 1, we obtain the following upper bound es t imates  for  ax,. by,: , .  

" 

k - 0  

Takmg the l imit  as n + m ,  we get 

pq, J +q 2 I - k E  e"". 

/TIl 1 + F 2 T T .  

For p<< 1, to high approximation, 

6x 6y 1 +E 

(2.137) 

(2.138) 

(2.139) 

Es t imates  of the form (2.138) can  also be obtained by an  alternative 
technique. Returning to Eqs. (2.131), consider  the function 

(I = (6X)' + (by)* + (ax')? +(by')*. (2.140) 
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U ' = 2 ~ 1 2 I C , h y -  C,&.K'l(C,6y'-CC,bxf). 

\ Y e  change ove r  to new variables,  defined by 

X, = & X  COS 11 +6>* sin $, 
X J  = - 6.r sin $ +-by cos$ .  
xj  = 6x' cos 9 +by' sin $, 
.K) = - bx 'a [n$  +by 'cos$ ,  

where 

(2.111) 

(2 .142)  

(2.143) 

In the phase space [x , ,  x2, x3. X J ,  Eqs. (2.140), (2.141) take the fo rm 

(2 .114)  

Clearly,  

I U' I < 2p2x2x4 < pu. ( 2.145) 

If Uo is the value ctf U a t  T = 0, we have f rom (2.145) 

U < (2.146)  

(2.147) 

inequalities (2.146), (2.147) gives upper-bound e s t ima tes  of the region 

Es t ima tes  (2.146). (2.147) are ent i re ly  analogous to es t imates  (2.138), 
containing the e r r o r s  6x. b y ,  r ega rd le s s  of the par t icular  variation of ox, o,,. 

(2.139). However, the method used in the derivation of inequalities (2.146), 
(2.147) enables u s  to go one s t ep  fur ther .  
exact es t imates ,  using the t ime r a t e  of change of the functions a,, aY or ,  
equivalently, of the functions C,. Cy.  

Note that Eqs.  (1.131) can  be writ ten in canonical (Hamiltonian) form: 

It enables u s  to construct m o r e  

d d Y '  - d = y  - 
d r  ddy * dK d d y '  . 

(2.148) 

Here  the Hamiltonian function H is a quadratic form of the var iables  
ax ,  by .  bx', by', such that 

- 2 H  = W 1 + ( 6 ~ ) ~  + ( 6 ~ ' ) ~  + ( 6 ~ ' ) ~  - pz (C, 13y - Cy 6xj2. (2.149) 
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(:h. 2. ALTIhlETER CORECTION 

By Eqs.  (2.131), 

w’ = - 2 ~ 2  (cxay - c,, ax) (c; ay - c; ax). (2.150) 

Suhstitutina the var iables  f rom (2.142). we define the angle $! as  follows: 

After s imple manipulations, w e  obtain instead of (2.149), (2.150) 

1 

Let a t  some t ime 

x ,  = pcosQ,. x2 = p s i n q l ,  

so  that, as i s  readi ly  seen,  

W 
P*= .: + x; 4 7. 

From the second equality in (2.152) we have 

(2.1 53) 

( 2 .1  54) 

Hence, using inequalities (2.154), (2.130), we a r r i v e  at  the es t imate  

( 2.1 56) p:V 
I W ’ l <  i=p-w. 

where 

v = 2 max v w  (2.1 57) 

Now, by analogy with (2.146), 

For $VT< 1 we have 

w,< WO(l +$vr). ( 2 .1  59) 

W e  have thus obtained es t imates  fo r  the divergence with t ime of the 
amplitudes of solutions of Eqs. (2.28) re la t ive to their  init ial  values, which 
take into consideration the t ime r a t e  of change of wX. wy. 

case of motion with constant velocity along a g rea t  c i r c l e  of the Ear th’s  
Let u s  now consider  the quantitative aspec ts  of the problem. Take the 
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surface,  which is regxrded a s  a sphe re .  Then, a s  is readily seen, 

y = .? - n a x V ~ ; , ~ ;  g 4 p % V 9  o ro ( 2.1 60) 

r,r'here I' is the veloci,:y relative to the Earth,  and o i s  defined by Eq. (2.125). 
Let us est imate  the possible relative growth of the e r r o r  i't,x'$-6p2 in 
relation to i ts  initial \value in a t ime 

(2.161) 

i . t a . ,  in the t ime it takes  the object to complete half the ci rcui t  around the 
Earth (assuming var icus  velocit ies).  Taking 1. 250 m /  sec, 500 m /  sec, 
1000 m /  see, 2000 m /  see,  we obtain the following table. 

I t  follows f rom the table that a t  least  in the c a s e  of constant cruis ing 
veIocity relative to the, Earth 's  s u r f a c e  the function I t '  r ema ins  virtually 
constant for  a fa i r ly  long t ime. 
t h e  form 12.127), i.e., the system can  be regarded as conservative (non- 
asymptotically stable) with regard to the e r r o r s  bx.  b y .  

est imates  i2.1-16), (2.158). We will compare  the est imates  (2.122), (2 .123)  
obtained f o r  the s imple c a s e  of pa rame t r i c  resonance (see the beginning of 
this section) with e s t ima tes  (2.146), (2.147). 

Therefore  Eqs. (2 .124)  can be simplified to 

[-et us consider a f e w  examples to i l lustrate  the application of the 

Taking r=o,,t. p ' = w ~ , / ~ ~ ,  we obtain f rom est imate  (2.123) 

and est imate  (2.147) gives in this c a s e  

(2.1 62) 

(2.163) 

Consider the c a s e  of slow motion along the parallel .  The equations of 
e r r o r s  for  this  c a s e  are Eqs. (2 .41) .  The  roots of the character is t ic  poly- 
nomial (2.80) of sys t em (2.41) are expressed in t e r m s  of u+,. mu, a, by (2.82), 
(2.83). When the stabil i ty condition (2.81) is broken, one of the roots  of the 
character is t ic  equation becomes real and positive. For sma l l  a?, when the 
stability is broken due to the increase in oz (motion with constant velocity 
along the paral le l  a t  high latitudes), the maximum value of the positive real 
root is - v2 /4 .  This  figure can  be used as a measu re  of instability of the 
system. 
(2.146) is $ / 2 .  

, 

The analogous measu re  of instabiIity obtained f r o m  est imate  
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Ch. 2. ALTIMETER CORRECTION 

As  the last  example, consider an object moving with constant velocity 
Directing the x y z  axes to the points of the along a t e r r e s t r i a l  meridian.  

compass  we obtain in this ca se  

o I -  --<i=const. 6 ) y = u c 0 s ( p ,  o , = u s i n q .  (2.164) 

The homogeneous e r r o r  equations a r e  obtained from Eqs .  (2.28) using 
(2.1 64): 

(2.1 65) I ax + o : 6 x  = u26x + 2u(p C O S T  by+ 2u s i n 9  6 j .  

6s + o i b y  = - ((Pz+ 1 1 uz -  cos 29) by - 2u sincp a i .  

Analysis of the exact computer solutions 6 x ( t ) ,  6 y ( t )  of Eqs.  (2.165) 
obtained for V = G =  500m/sec ,  lOOOm/sec, 2000m/sec  has shown ( i n  
complete agreement with est imate  (2.158)) that the expressions for b x ,  by 
can be written to fa i r  approximation in the form 

6x = - (69 cos 

by = 

+ sin coot sin e + (6x0 coso,t + - sin q,t cos e, 
(2.1 66) 

01) 

0 0  1 t 1 
( 6 9  ) cos o,t + - sin mot cos E + 6n0 cos q,t + ai, sin o,t sin e, 

0 0  

where 

E =  i o z  dt = f (coscp- 1). 
0 'p 

(2.167) 

Note that Eqs. (2 .166)  a r e  ent i re ly  analogous to the approximate expres-  

A s  a rule, any long t r ip  generally follows some orthodromy on the 
sions (2.94) obtained for motion with constant velocity along a parallel .  

Ea r th ' s  surface with virtually constant velocity ( w e  a r e  re fer r ing  here  to 
cruis ing velocities up to 2000-3000 km/ sec,  i.e., s ea  vessels ,  a i rc raf t ,  
winged rockets) .  It therefore follows from the above examples and es t i -  
mates  that to f a i r  approximation, which i s  quite sufficient for  the analysis  
of the e r r o r  equations, the projections of Eqs.  (2.28) onto the f ree  azimuthal 
axes ,  i.e.,  Eqs.  (2.36), can be replaced by the equations 

The solution of these equations c lear ly  completes the treatment of our  
problem. 
a sphere around the Earth,  i.e., the solutions of Eqs.  (2.28),  a r e  obtained 
from the solution of Eqs.  (2.168) using the inverse of Eqs. (2.33), where we 
should take 

v=-  jo ,dt+V? (2.1 69) 

The expressions for  6xp 6y for  a rb i t r a ry  co-moving axes on 

0 

This  was in fact the method used in writing the equations of e r r o r s  6 x . . 6 y  
in projection onto the axes  oriented to the points of the compass,  Eqs.(2.166). 
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5 2.4. “TABILITY A h A L Y S I S  AKD I N T E G R A T I O N :  THREE-ASCELEROLIETER SYSTELIS 

T h e  e s t ima tes  of t t i s  section fur ther  show that Eqs .  (2.168) ensu re  
satisfactory accuracy fo r  the case of uniform circulation on  the Ear th‘s  
su r face  and fo r  any s t o r t  maneuver.  

In conclusion note that in o u r  ana lys i s  of the homogeneous equations 
(2.361, i.e., Eqs.(2.121), we  considered the case of a r b i t r a r y  motion with 
s m a l l  (compared to  c i rcu lar )  velocity a t  a constant distance from the 
Ear th’s  center ,  when 

r = cons:. o, = const. (2.170) 

It i s  readily s e e n  that the fundamental resu l t s  of this  analysis can  be 
fur ther  extended to case of motion with variable r ,  Thus, if 

r=rO+pV). J$i.((<I, (2.171) 

the e s t ima tes  (2.138) are replaced by 

where 

For s m a l l  values of ( B ~ + + ~ ) T  w e  have the inequalities 

(2.172) 

(2.173) 

( 2.174) 

Es t ima tes  s i m i l a r  to (2.146), (2.147)* (2.158), and (2.159) can also be  
We will not der ive  these  es t imates ,  and the r e a d e r  can  do it as obtained. 

a n  exerc ise .  As  f a r  as p i t )  i s  concerned, es t imates  (2.172) and (2.171) are 
always quite sufficient. 

§2.1. 
THE FIRST GROUP OF ERROR EQUATIONS FOR A 
THREE -ACC E LEROMETER SYSTEM WITH 
ALTIMETER CORRECTION 

STABILITY ANALYSIS AND INTEGRATION OF 

2.4.1. Stability ana lys i s  

Consider the e r r o r  equations of three-accelerometer  s y s t e m s  where the 
spher ica l  component of the Earth’s gravitational field entering the ideal 
work equations i s  formed using ex terna l  guidance information on the distance 
f r o m  the Ear th .  

T h e  second group of error  equations in this case i s  the same as f o r  
sutonomous ine&ial systems,  and the r e su l t s  of 1.3.1 can  therefore be 
readily applied to  three-accelerometer  s y s t e m s  with a l t ime te r  correction. 

shown in 2.2.1 that t t e  f i r s t  group of errors i s  the  solution of the 
T h e  f i r s t  group of error equations, however, i s  different. We have 
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vector  equation (2.15) 

(2.175) I 3pr &r + q 6 r  = An - Am x $ + d (Am X r ) + T  
dtl  r 

(Ar = Ah). 

Projected onto the co-moving axes  XJJZ, with the z axis  pointing along r r  
the vector equation (2.175) gives a sixth-order sys t em of sca l a r  differential 
equations (2 .16 ) .  

Eq. (2.175) i s  best analyzed in projection onto fixed-orientdtion ases, 
s ince the resulting sca l a r  equations have a par t icular ly  s imple  form.  
Choosing k*i i , :*  as the fixed axes,  we obtain the equations 

The homogeneous equations (2.176) for  r =cons t  reduce to harmonic 
equations with Schuler ' s  frequency wtJ= kw. 
i s  thus obvious in this case .  
Eqs .  (2.16) fo r  a r b i t r a r y  wL(t). c t i y ( t i ,  o,(t~ and r =const, i.e., a rb i t r a ry  
motion on a sphere  of constant radius  concentric with the Ear th .  

along a paral le l  with constant velocity), stabil i ty of motion can be established 
without considering Eqs .  (2.176), by d i rec t  inspection of Eqs .  (2.16). Indeed, 
for motion along a parallel, when t o , = O  and oy. a, are given by Eqs .  (2.78), 
(2.79),  the homogeneous equations (2.16) take the fo rm 

The nonasymptotic stabil i ty 
This  immediately leads to stabil i ty of 

N o t e  that if o ) , ~ .  ~i),, wz in Eqs.  (2.16) are constant (e.g., the c a s e  of motion 

(2.177) 

Theseequations, l ike Eqs.  (1.132), (2.41) in the preceding, can  be inter-  
preted as the equations of motion of a unit point m a s s  about the equilibrium 

~ x = u ,  6y=u,  a z = u  (2.178) 

in a force  field produced by the potential force  function 

(2.179) 

and the gyroscopic forces  

- 2t0, hjt + 20,& 20, a;, - 20, a i .  ( 2.1 8 0) 

For the equilibrium (2.178) to be stable, the force  function should have a n  
isolated maximum a t  the point of equilibrium. Application of Sylvester ' s  
condition of positive definiteness to the quadratic fo rm in the right-hand s ide  
of (2.179) gives  the inequality 
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which coincides with inequality (2.49) fo r  the stabil i ty of a two-accelero- 
meter  inertial  system. 

Outside the region (2.181) the degree of instability in the potential field 
i s  even and the equilibrium i s  stabilized by the gyroscopic forces .  This  
can be shown by examining the charac te r i s t ic  equation of (2.177), which in 
t e r m s  of a new unknown p ' = q  takes the form 

4' - (30); +- 2W') 4' + (30); + W4) q + (0; - 02))' W; = 0, ( 2  . I  82) 

where w e  have written 

0 2 =  0 1  + 0:. (2.183) 

The polynomial (2.1 82) sa t i s f ies  Hurwitz 's  conditions, s ince always 

( j(*): ?UJ?) (3(*); f 0') - 0; (ai - 07' > 0. (2.184) 

The discr iminant  A of the cubic equation which i s  obtained from (2.182) 
by substitution of the \pariable 

(2.185) I y = q + 5 (3.); + 209 

(2.186) 

If w = 0. 4(9: -id I- 0. - w2 c 0. Eq. (2.1 82) has  three  different r e a l  
negative roots, 
has three pa i r s  of different pure imaginary roots .  

the charac te r i s t ic  equation has  a pair  of t r ip le  imaginary conjugate roots: 
p1.2,3=ju)o. ~ 4 , & , ~ =  -J%. Finally f o r  40~-a2= 0, w e  have the double roots  

and the charac te r i s t ic  equation of (2.177) correspondingly 

F o r  &=w: the charac te r i s t ic  equation has  a multiple ze ro  root. If o = 0, 

p r , 2 = - J j j C .  p S 4 = j 0 0 .  
It i s  readi ly  seen  that whenever the charac te r i s t ic  equation of (2.1 77) has  

multiple roots ,  the elementary divisors  of the Characteristic mat r ix  remain 
linear, which completehs the proof of nonasymptotic stability of Eqs.  (2.177). 

2.4.2. Internal dissipation forces  

In our  analysis  of the stability of Eqs .  (1.132), (2.41), (2.177) we found 
cer ta in  regions where the degree of instability under the action of potential 
forces  alone was even and where the sys tem was effectively stabilized by the 
gyroscopic forces .  This  stabilization, however, is transient, a s  it is 
destroyed by internal  dissipation forces .  

Although the 
internal  dissipation forces  a r e  unavoidable in actual displacements of a 
mechanical system, they can be made so sma l l  that the stabil i ty i s  not broken 
during a finite t ime of sys tem operation. Moreover, a rb i t r a ry  introduction 
of dissipative forces  into the final equations (with the only ,justification 
that they a r e  unavoidable) may actually lead to ser ious  e r r o r s  in stabil i ty 
analysis. To demonst]-ate this fact, consider  the homogeneous equations 
(2.1 76), (2.177). 

The following point should be borne in mind, however. 
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F o r  simplicity, take the case  of equatorial motion. Then 0,- 0 in 
Eqs.  (2.177), the equation for  by i s  separated,  and the remaining two 
equations give the simultaneous sys tem 

(2.187) I 

1 

nx + pi - a$) 6% + 20,& = 0,  

62 + pi - o;)b~ - 20, ax = 0. 
\ 

Since the axis  & coincides with the Ear th ' s  spinaxis ,  we have taking the axes  
X .  y to coincide initially with the axes E.. \ (ay= const) 

(2.188) ai, = - 6% sin o,t + &.z cos o,t, 
6% = 15% cos o,t + bz sin o,t. 

If the gyroscopic forces  

2 ~ ~ a . i .  - 20,& (2.189) 

a r e  dropped f rom Eqs .  (2.187), we a r e  left only with potential forces  with 
the force function 

(2.190) 
1 u=- -  2 ( 0 2 -  0 0;) I(W+ ( W I v  

and Eqs.  (2.187) turn  to be equations in normal  coordinates. 
The force function has a maximum for  6%=6z= 0 if 

w;- 0; > 0 .  

On the other hand, the charac te r i s t ic  equation of (2.187) i s  

p4 + 2 (o; + o;) p? + (mi - o y  = 0. (2.192) 

Its roots  a r e  

PI,  2 , 3 , 4  = +. i (00 -" 0,). (2.1 93) 

i.e.,  Eqs.  (2.187) a r e  nonasymptotically s table  for  any oy. 
The stability of Eqs .  (2.187) for  oy not satisfying inequality (2.191) is 

obviously ensured by the gyroscopic forces  (2.189), s ince for  a:-$< 0 the 
degree of instability in a pure potential field is even. 

Rayleigh' s dispersion function 
We now introduce in Eqs.  (2.187) smal l  internal  dissipative forces  with 

f = L  ~2 [(nip + (aY)p + (&$I. (2 .1  94) 

The second equation in (2.177) then becomes asymptotically s table  (ox= 0, 
o,= 0), and Eqs.  (2.187) take the form 

(2.195) 1 an+ e*bx+(o; -o02, )6xf2oy6i .  Y O ,  

6% +E2& + (ai - 0;) 62 - 20,& = 0. 

F o r  sma l l  E* the charac te r i s t ic  equation of (2.195) can be wri t ten in the 
form 

p4 + 2 ~ 2 ~ 3  + 2p2 (0; + q + 2e2p (w; - a;) + (a; - a;:>' = 0. 
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If inequality (2.191) i s  not satisfied,  the coefficient before p becomes 
negative; Hurwitzls necessa ry  conditions are broken, and the sys t em i s  
therefore  unstable. The stabil i ty produced by gyroscopic fo rces  (2.189) 
outside the region (2.191) is thus destroyed by internal dissipation forces .  

Let u s  now introduce internal dissipation in the homogeneous equations 
(2 .176) .  The f i r s t  two equations take the fo rm 

( 2  -197) 

For a:,, 6% w e  obtain damped solutions, and by (2.188) 6.v. by a r e  a l s o  

\Ve have thus a r r ived  at  a n  apparent contradiction. Th i s  i s  associated 
expressed by damped solutions, i r respect ive of c o y .  

with t h e  fact that w e  have introduced dissipative fo rces  in different coordi-  
nate sys t ems .  
the second c a s e  the coordinates b;,. bq-. K,. This  difference in approach i s  
responsible for  the difference in the final r e su l t s .  
we project Eqs.  (2.197) onto the axes  x. z using Eqs.  (2.188). 
two equations 

In the f i r s t  c a s e  these w e r e  the coordinates A x ,  69. 62, and in 

To prove this asser t ion,  
This  gives 

(2.198) 1 bx + p; - $) a.K +- 20 62 + E ?  0.; + E?@ az = 0, 

6 ~ + ( @ ~ - @ ~ ) 6 Z - 2 2 0  6x + E 2 & ;  - E 2 0  6.K =o. 

which differ  f rom Eqs. (2.195) in their  las t  t e rm.  
equation of (2.198) 

The character is t ic  

(2.199) 

sat isf ies  Hurwitz's conditions i r respect ive of the value of coy. 

forces  in the va r i a t iond  equations may eventually ( in  the resul t  of s o m e  
transformations) lead to erroneous resul ts .  Dissipative forces,  if a t  a l l  
present  in the system, should be considered in all s tages  of the derivation 
of the variational equations; any transformation of the variational equations 
should include the dissipative t e r m s  as well. 

The above example shows that a r b i t r a r y  introduction of the dissipative 

2.4.3. 
equations for  a c lose object 

Stability of the f i r s t  group of 

Let us  r e t u r n  to Eqs.  (2.176). For r = c o n s t  their  solutions are harmonic 
oscillations, i.e., we are dealing with nonasymptotic stability. If the iner t ia l  
system is mounted on a close object, which moves near  the Earth 's  surface,  
the r in Eqs.  (2.176) is s o m e  function of time. A cer tain choice of the 
function r ( t i  w i l l  make the solution of Eqs.  (2.176) unstable (divergent).  
w e  a s s u m e  that the object moves nea r  r = Y o =  const, so  that 

If 

r = r O + p ( t ) .  % < I .  (2.200) 

upper-boundestimates analogous to (2.138), (2.172) can be readilyconstructed 
f o r  the measu re  of divergence of the solutions of Eqs.  (2.176). 
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F r o m  Eqs.  (2.176), using (2.200), we get 

3w& 

3 4 ,  

hi!, 

&,+o;,y n. =--&- yo 5.9 

&I, + mf tq, = - - yo 6%' 

&E, f w i  at, = - - b? k. 

where 
0 2 - L .  

0- ,os 

(2.201) 

(2.202) 

The solution of Eqs .  (2.201) i s  found by successive approximations, along 
the s a m e  lines a s  the approximate solution (2.135) for  Eqs.  (2.124). 
gives the following estimates: 

This  

and for 

02 = max , r = mot, 
yo 

30% << 1 

we have 

(2.204) 

(2.205) 

Est imates  (2.203), (2.205) a r e  analogous to es t imates  (2.172), (2.174). 
The latter,  a s  i s  readily seen, reduce to es t imates  (2.203), (2.205) for  
$= 0. 

2.4.4.  
a rb i t r a ry  motion a t  a constant distance f rom the 
Ea r th ' s  center  

Solution of the f i r s t  group of equations for  

In this ca se  the e r r o r  equations projected onto fixed-orientation axes a r e  
Eqs.  (2.176). Thei r  solution i s  

ago 136 = & ~ ~ c o s o , , f  +-sine@+ 
0 0  

I 

+ & J' [ARE, - 2 wq.4 - Am:*+*) + 
0 

br + 9, Amt* - c, Ah,,. + 3 4  %] sin o, ( t  - T) dt, 
I:! 2nGl 
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(2.206) 

Using the known values of the  direction cos ines  a t j  between the axes  
;,. and x .  z we find 6.r. 6.v. 6 2 ;  in the corresponding expressions 6:;. 6<, 
Xi A:., 66;. g: can  be expressed in t e r m s  of 6x", 6yo, hr", 6,;). 6;", and the 
functions An:.# In ,,*. In;,, Am;,. Am,,*, Am:. in t e r m s  of An,?, -Iny, I n z .  I ~ z , ~ ,  A m y ,  Amz.  
For a n  object which remains stationary in  the O,;,Q;, axes ,  we may take the 
axes  5,. q.. 5, to coincide with the axes  x. 
SO that for  6.r. by.  Ar we obtain 

z and d i rec t  the z axis  along r ,  

(2.207) 

For constant instrumental  errors w e  get  

(2 .2  08) 

For  a n  object moving with constant velocity along the a rc  of a fixed- 
orientation g rea t  c i rc le ,  the plane of the g rea t  circle is made  to  coincide 
with the  planes 
we obtain 

and x y ,  SO that using the transformation formulas  (2.188) 
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6 j o  
0 0  

6y = by0 cos w,t + - sin o,t + 
I 

+ 2 j (An, + Am,r - Am,ro,) sin oo (f - 7) d7, 
U 

dz = (6x0 sin o,t + bzo cos o,t) cos mot + 
I 

WO 
+- - l ( b 2  - 6XOWy) cos our + 
+ (a~O+6zOoY)sino,t~sinoot+ 

+ -& 
+ (An, + 2 Ant,rw, + 

f 

[(An, - Ah,r)  sin oy (f - T) + 
0 

+ 3 3  Ar) COS oy (f - T)] sin Oo (t - 7) dT. 

For constant instrumental  e r r o r s  and o;<<wi, Eqs. (2.209) give the 
following approximate relations: 

ax =(~.rocoso,t - ~ t " s i n o , t ) c ~ ~ ~ & +  

+ L (6x0 cos o,t - 6iOsin out) sin + 
0'0 

-+ 2s. 1 - coso,t cos o,t) + 
a$ ( 

(2.2 10) 

If in  (2.209) we take ( O y = 6 ) g r  w e  obtain the e r r o r s  ax, 6y. b t  in the coordi- 
For constant instrumental  e r r o r s ,  the nates  of a satel l i te  in c i rcu lar  orbit .  

corresponding expressions take the form 

An Am r 3 + [ -f + -2- + -A,) (sin Za,$ - ZQ). 
h; 20, 4 

byo 
0 0  

6y ==6y0coso0t + -sin o& + 

4 + (1 - cos *). Any - 

(2.211) 
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F r o m  Eqs. (2.206),* ma t r i ces  (1.10), (1.7) of direct ion cosines ,  and the 
obvious equality 

(2.212) 

we can obtain appropriate express ions  fo r  6x .  by, 62 for a n  object moving 
along a paral le l  with constant velocity c' re lat ive to the Ear th .  
give he re  these  ( fa i r ly  complex) expressions.  
der ive  them without much difficulty. 

We will not 
If, necessary ,  the reader w i l l  

2.4.5. 
equations fo r  Keplerian motion 

Integration of the f i r s t  group of e r r o r  

F o r  the c a s e  of Keplerian motion, the vector  equation (2.175) projected 
onto the orbi ta l  axes  .CJ*Z gives  a fourth-order sys t em 

(2.213) 

(2.214) 

r /  

1)s -,'A r' - w i l i x r  

b : - \ ~ - w ~ ) t $ t - ~ ~ 6 . ~ -  3') 6 . i ~  A r t 2 + 2 A r n , , r u v y T  3u I r  

;%,tu + ~ " ~ 6 ;  = ~ r t , ~  - 2 1 m j  - I i t , r .  

. .  r :  . 

and a second-order ec,uation 

A: -r 2 = Art,  i 2 \nt,c; -+ G X r  - Amp,+,. r '  

Eqs.  (2.213), (2.214), unlike Eq. (1.92) are not the var ia t ional  equations of 
Keplerian motion; Poincark ' s  theorem, used in solving Eq. (1.92), is no 
longer applicable to  the solution of Eqs. (2.213), (2.214). 

method of integration, as we have a l ready  found out in solving Eqs .  (2.95). 
T h e  solution of 

the la t te r  is (2.98), and for  low-eccentricity orb i t s  and constant projections 
of the vec tors  An and .Im on the orb i ta l  axes i ts  solution is (2.105). 
problem thus reduces  to  the solution of Eqs .  (2.213). 

vector equation (1.92) on the orb i ta l  axes x and z - shows that the homo- 
geneous sys t em (2.213) h a s  two par t icu lar  solutions: 

However, compar ison  of Eqs. (1.92) and (2.213), (2.214) sugges ts  a 

Eq. (2.214) coincides with the second equation in  (2.95). 

T h e  

Comparison of Eqs .  (2.213) with Eqs .  (2.96) - t h e  project ions of the 

(2.2 1 5) 

I ts  o r d e r  can thus be lowered to  second by the substitution of var iab les  

(2.21 6) 
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The equations for 1) and y take the form 

(2.217) 

Multiplying the second equation in (2.217) by j = \ q ,  adding it to the 
first equation, and introducing a new (complex variable) 

2 = 11 f J q ,  (2.218) 

we end up with a f i rs t -order  equation for  z 

;+ 2z(+jldy)=0, (2.2 19) 

which is immediately integrated. The general  solution of t h i s  equation is 

where v ,  a s  before, is the t rue anomaly, and C is a complex constant. 
Changing back to 6x, 6 z  and using (2.113), we obtair. two par t icular  

solutions of Eqs. (2.213)  

(2.221) 
I 

Eqs. (2.221), together with Eqs.  (2.215), constitute a system of four 
A mat r ix  a is now formed from these par t ia l  solutions of Eqs. (2.213). 

particular solutions and their  derivatives (using (1.162)), whose elements 
a r e  

I 

I 

ail = f , a,* = 0, a13= .L sin 2v. a14 = 5 cos 2v, 

a2, = 0, 

a?4 = sin 2v. 

a,, = - sinv, a , = ~ ,  
J m  

a2* = f , = - f cos 2v, 

(2.222) 

The determinant of the matr ix  a is the Wronskianof our  system of particular 
If the homogeneous system (2.213) is reduced to the Cauchy form, solutions. 
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i.e., represented  as  a sys t em of f i r s t -order  differential equations solved 
for the respect ive der ivat ives ,  the ma t r ix  comprising the coefficients of the 
right-hand s ides  wil? have z e r o  diagonal elements,  as in the c a s e  of Eqs.  
(1.163). Its  value for  t = 0 i s  readily 
calculated. 

The  LVronskian i s  therefore  constant. 
Seeing that z+ (0)  = 0, w e  get f rom (2.222) 

( a  I =  4v*(1 - e ? )  f- 0. (2.223) 

Our sys t em of par t icular  solutions of homogeneous equations (2.213) i s  
thus  l inear ly  independent. The  genera l  solution of the homogeneous system 
2.2 13)  i s  therefore?' 

4 4 

I - 1  1-1 
6s = ~ , a , , ,  6.z = C,a2c. (2.224) 

T h e  solution contains a l l  the s ix  arbitrary constants 
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i ~ p , ,  = 0 ,  i Ciazj = 0,  
' - 1  ' - 1  

4 

i - I  
4 

diu,, =An,  - 2 Am,; -Amyr ,  

6p,, = A n ,  + 2 Am ,ro, + v. 
1 - 1  

where 

(2.225) 



(2.230) 

If the instrumental  errors are constant and the ut,  and p,, are inser ted 
f rom (2.230) into (2.228), integration and obvious simplifications which 
follow f rom the fact  that e is small give the following expressions for the 

(2.231) 



+ 2 F i n  2vt - -sin 3vt f 4 

+ ;+ (-  ; C O S f t  + 2 cos 2vt - f cos 3 v t )  + 

(2.23 1) 

+ y (COS vt - cos 3 V t )  + 620 (1 - cos V t )  + 

+ 
+ ?\. (- s i n  2vt - sin vt + 3 sin vt cos 2vt)I .  

(- I + cos 2vt + 3 sin vt s i n  2 v t )  + ?V 

SZQ 

F'or e = 0, i.e., a c i r cu la r  orbit ,  Eqs.  (2.231) reduce ( v = ~ ) ; ~  r = a )  to 
the f i r s t  and third equations in (2.211). 

$2 .5 .  
INSTRUMENTAL AND SETTING INACCLRACIES. 
CO\LIPXRISON WITH AUTONOMOUS INERTIAL SYSTEMS 

IIEPEiWDENCE OF NAVIGATION ERRORS ON 

2.5.1. 
errors on sett ing e r r o r s  

Dependence of position and orientation 

In S2 .2 ,  in the derivation of the e r r o r  equations of iner t ia l  sys t ems  using 
additional guidance information on the distance f rom the Ear th ' s  center  (or 
f rom i t s  surface) ,  we established that only the f i r s t  group of differential  
e r r o r  equations, i.e., Eqs .  (1.92), (1.95), and the ensuing relat ions change 
compared to autonomous iner t ia l  sys tems.  
affected. Thus, in our  analysis  of the dependence of the total position and 
orientation e r r o r s  of the object (or the iner t ia l  platform) on instrumental 
errors ,  a l t imeter  e r r o r s  A r = J h ,  and sett ing e r r o r s  in t h e  initial conditions, 
w e  may proceed f rom the resu l t s  of 1.3.5, where the corresponding t rea t -  
ment for an  autonomous iner t ia l  sys tem was ca r r i ed  out. 

(1.94) by the relat ions 

The other equations a r e  not 

The total  position e r r o r s  6x2. by2, bz ,  are expressed  according to Eqs. (1.93), 

hr ,  = br + br,, 
br2 = bxzx + 6yzy + bz,x 

brl = c) x r .  f 2 -232) 

The projections of these equations on the moving axes  xyz, with the z axis  
pointing along the radius  vector r give, by (1.108), 

(2.233) 

Orientation e r r o r s  of the co-moving axes  a r e  determined by a sma l l  
rotation vector 8,  whose projections, by Eqs. (1.1 18), are 

(2.234) 
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where 

Sr = 6sn - Syy +- b .w .  

In Eqs.  (2.233), (2.234), the projections O,r. 0,. Oz a r e  the solutions of 
Eqs. (1.93) or (1.96). 
snlutions of Eqs.  ( 1 . 9 2 )  o r  (1.95).  In o u r  case ,  for ~>r, by. 6r in Eqs.  12.233), 
1 2 . 2 3 4 )  we should inser t  the solutions of Eqs. (2.15a) or (2.16) for three-  
acce lerometer  sys t ems  and solutions of Eqs. (2.28) for two-accelerometer 
s 1- stems . 

Thus. in o r d e r  to establish the difference between the perturbed motion 
o f  autonomous sys t ems  and sys t ems  with a l t imeter  correct ion,  it suffices to 
conipare the p rope r t i i s  of solutions of Eqs .  (1.95) with the propert ies  of 
solutions o f  Eqs.  ( 2 . 1 5 a ) ,  (2.28).  This  comparison was partly ca r r i ed  out 
in the previous analysis  of stability and integration of Eqs.  (2.15a), (2.28). 
In \.ieir. o f  the grea t  importance of this problem, we will now consider it 
in m o r e  detail .  

F i r s t  let u s  compare the solutions of the homogeneous equations (1.95), 
(2.161, ( 2 . 2 8 ) ,  i.e., the perturbed motion of a n  autonomous iner t ia l  sys t em 
and of a sys t em with a l t imeter  correct ion in c a s e s  when setting inaccuracies  
(errors in the initial conditions) a r e  the only source  of perturbation. 

equations with constant coefficient lead to instability of the autonomous 
iner t ia l  sys tem.  
the practically important region 

For autonomous iner t ia l  sys tems,  h . ~ .  by ,  bz  are 

-4s .r-e have shown in 1.3.2,  s o m e  of the cases when Eqs.  (1.95) reduce to 

The autonomous iner t ia l  sys t em i s  definitely unstable in 

The roots  of the charac te r i s t ic  equation of (1.95) in region (2.235) contain 
a positive root which :at low velocities is close to  w , , l 5 .  
e r r o r s  h x ,  by .  bz will therefore  increase  exponentially, rapidly deviating f rom 
the initial setting. The numerical  es t imates  of 1.3.5 show that a n  autonomous 
iner t ia l  sys t em may function with a n  accuracy  comparable with the accuracy  
of the initial setting only for 10-15 min f rom the start. 

instability. Indeed, assuming z e r o  instrumental  errors, we obtain f rom 
Eqs.  (1.166) 

The  moduli of the 

In case of Keplerian motion, the solutions of Eqs. (1.95) also point to 

where C,' are constant,; determined by the inaccuracy of the initial conditions, 
A,,,  .A:,, B,, are the e lements  of the mat r ix  of par t icular  solutions (1.167). If 
the elements 5,' are periodic functions of time, s o m e  of the elements A,,. .4-, 
are proportional to t ime ( A , ,  and A2,) ,  which leads to instability. 
A,, contains t ime as  a [actor in the second t e r m  with a coefficient e .  
mc.tion in a c i r cu la r  orbit ,  the solutions bx,  Or of the homogeneous equations 
(1.95), according to (1.152), have the fo rm 

Note that 
For 

h 
bx = hxo .+ (4  sin vf - 3vt)  + 

2 3 9  + 6br*(s invf  - v t )  + --;-(cosvt - I ) .  

.7 <\X! 3 9  62 =-- ( 1  - ~ o s v t ) + 6 2 0 ( 4  - 3 cosvtr + sin v f .  

(2.237) 
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F r o m  the expression for 6 x  we s e e  that the e r r o r s  a d ,  6 2 0  introduce a 
t e r m  which increases  l inearly with t ime. For  a low-eccentricity orbit, the 
expression for  62 a lso contains time-proportional t e r m s  (multiplied by e )." 

The stability situation for Eqs. (2.15a), (2.28) is incomparably better.  For  
Eqs.  (2.28) in cases  when they a r e  reduced to equations with constant coeffi- 
cients, the stability condition is precisely inequality (2.235). 
which is stationary in the O,i,qAc* axes, the solution of the homogeneous 
equations ( 2 . 2 8 ) ,  according to (2.69), a r e  harmonic oscillations of frequency 

For  an object 

(2.238) 

For motion with constant velocity along the a r c  of a great  c i r c l e  of a sphere 
of constant radius concentric with the Earth, the expression for  DY in(2.238) 
r ema ins  a s  above and the equation for  the e r r o r  6x in the plane of motion 
takes the fo rm ( s e e  the f i r s t  equation in (2.72) 

(2.239) 

Here  the harmonic frequency is v = v-:. 
F r o m  Eq. (2.239) w e  see that for a satell i te in a c i r cu la r  orbit, Eq.(2.28) 

leads to instability, since in this c a s e  

bx = 6x0 + b$t. (2.240) 

The motion of a satell i te in an a r b i t r a r y  elliptical orbit  is also unstable. 
Indeed, in this case,  by (2.115), 

bx=- I ICY- t  rv (2.241) 
u v m  cy: 

yet the t rue anomaly v is a monotonically increasing function of t ime. 
the average it is proportional to t ime. 
small ,  w e  have f rom (2.120) 

On 
If the eccentricity e of the orbit  i s  

6x  = 6x0 1 1 + e ( 1 - cos vt)j + b io  [ t + e (+ sin vt - t - t ccs vt ) ] .  (2.242) 

In connection with Eqs.  (2.28) we have noted that the coefficients of these 
equations a r e  in general  variable even for  motion at  constant distance from 
the Ea r th ' s  center,  and their  solutions may thus prove to be unstable. 
However, a t  velocities substantially lower than the c i r cu la r  velocity, the 
solutions of the homogeneous equations (2.28) a r e  bounded by est imates  of 
the fo rm (2.146), (2.158). 
motion of an iner t ia l  system with two acce le romete r s  r ema ins  close to 
harmonic oscillations of frequency 00. 

Eqs.  (2.15a), (2.16). 
system retaining al l  the three accelerometers ;  the external information on 

It follows from these est imates  that the perturbed 

Fur the r  improvement of the stabil i ty of an inertial  system i s  provided by 
W e  r eca l l  that they apply to the case  of an inertial  

* See 55.4 and 55.5 in "Theory of Inertial Navigation: Autonomous Systeins." 1966. 
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the altitude h i s  used only to fo rm the magnitude of the Ea r th ' s  gravitational 
acceleration. 

distance f rom the Ea r th ' s  center ,  the iner t ia l  sys t em i s  stable.  
follows f rom the representat ion (2.206) of the solution of Eq. (2.15a).  

When the external a l t ime te r  information i s  used in this way, the iner t ia l  
sys t em is a l s o  s table  fo r  Keplerian motion. 
Eqs.  !2.228), (2.98). When the instrumental  e r r o r s  are zero,  we have f rom 
the preceding 

I n  this ca se ,  assuming a r b i t r a r y  motion of the object a t  a constant 
T h i s  

T o  establish this point, consider  

(2.243) 

But a l l  the matr ix  e lements  a,, and B,, of the par t icular  solutions, as we 

In particular,  fo r  low-eccentricity orbi ts ,  the homogeneous equations 
see f rom (2.226), (1 .I 67), a r e  periodic functions of t ime. 

(2.16) have the solutions (see Eqs.  (2.105), (2.231)) 

6x=bxO[ 1 f e ( l  - cosvt)] + 2~ a> [SInZVt+ . 

+ e (- sin vt - sin 2vt + 3 sin vt cos 2vt)l + 
+ 2 2  [cos 2vt- I + e (  i -cos 2vt-3 sin vt s i n  ~ v t ) ] .  

6y = 6 p  [cos vt + e (cos vt - 1 - sin'vt)] + 
+ + [ s invt+ e(- sinvt+sinvtcosvt) j .  

"V 

6 t = 6 z O [ I  + c ( l  - c o s v t ) j + ~ [ I - - c o s 2 v t +  6 2  

f a ,  - l + c o s Z v f + 3 s i n v t s i n Z v t ) j + ~  a& lsinZvt+ 

+ e  (- sin 2vt - sin vt  +3 sin vt cos Zvt)]. , 

(2.244) 

For a r b i t r a r y  motion, when r ( t )  is an a r b i t r a r y  function of time, the 
solutions of Eqs.  (2.16) may prove to be unstable. 
instability are ent i re ly  determined by the f o r m  of the function r ( t ) .  

Here  stabil i ty and 

The  homogeneous sys t em (2.16) is equivalent to the vector equation 

(2.245) 

p'r3 i s  always positive. Hence, a t  any finite distance f rom the Ea r th ' s  
c e n t e r ,  the solution of Eq. (2.245) is a n  osci l la tory function. The amplitude 
of these oscil lations may inc rease  only in case of pa rame t r i c  resonance. 

fo r  the projections 01' the vector br on the axes  h. q.. L, as in (2.203), 
If the object moves nea r  s o m e  constant r =yo, so that r = ro  + p ( t ) ,  w e  have 

(2.246) 

The upper-bound e s t ima tes  (2.246) fo r  the divergence of the amplitudes 
of solutions of Eq. (2.245) f r o m  the initial values a r e  c l ea r ly  too high. 
are nevertheless f a i r ly  effective. 

They 
Thus,  if the object moves on the Ea r th ' s  
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surface,  we have maxlpl-2 .104m, r 0 ~ 6 . 4 - 1 0 6 m ,  0 , = 1 . 2 5 . 1 0 - ~  sec-'. 
The amplitude will thus increase by a factor e-2.78 in a t ime of the o r d e r  
of 2 5 .  l o 4  sec, i.e., about 7 0 h r s .  F o r  max IpI- 105m, this t ime drops to 
1 5 h r s .  
s ides  of inequalities (2.246) for  l p I <  105m are virtually unity. 

If the iner t ia l  sys t em functions for a few hours  only, the right-hand 

2.5.2. 
and gyroscope e r r o r s  

Navigation e r r o r s  due to acce le romete r  

Let us  now consider the relations between the instrumental  e r r o r s  and 
ax, 6y, 62. We will only consider the c a s e  of constant instrumental  e r r o r s ,  
for  which explicit expressions f o r  bw,  by. bz have been derived in the previous 
sections.  F i r s t  w e  will discuss  the instrumental  e r r o r s  of the sensit ive 
elements  of the iner t ia l  sys t em - acce le romete r s  and gyroscopes; the 
al t imeter  e r r o r s  A r = A h  a r e  treated a t  a l a t e r  stage.  

solutions of Eqs.  (1.96), (2.28), (2.16) for a stationary object. The instru-  
mental  e r r o r s  A i l , ,  An, occupy equivalent positions in the expressions for b.r 
and b y .  The only difference is in the expression for  b z .  For an autonomous 
iner t ia l  system, i.e., in Eqs .  (1.141), the error  bz associated with An, 
i nc reases  exponentially. In a three-accelerometer  system with al t imeter  
correction, a s  we s e e  f rom the third relation in (2.208), a constant e r r o r  in, 
only leads to harmonic oscil lations about a displaced s ta te  of equilibrium. 
The effect of An2 i s  thus the s a m e  as the effect of An,. Any in the expressions 
for  bw,  b y ,  which a r e  identical for  a l l  the three cases .  The gyroscope e r r o r s  
Amx,  Amy,  Ant, do not enter  Eqs.  (1.141), (2.70), (2.208). In accordance with 
Eq. (2.233), the gyroscope e r r o r s  en te r  the expressions for  the total position 
e r r o r s  bx2, by,, 6z2 through the projections ex. e, making identical contribution 
in a l l  the three c a s e s .  

solutions of Eqs.  (1.96), (2.28), and (2.16) for motion with constant velocity 
along the g rea t  c i r c l e  of a sphere of constant radius  concentric with the 
Earth,  which does not rotate  with the Ea r th .  The expressions for  by are the 
s a m e  in a l l  the th ree  cases ;  they differ f rom the second expression in (  1.141) 
for  the case of a stationary base only in that they contain the e r r o r  Am,. It 
thus r ema ins  to compare Eqs.  (1.150), (2.73), (2.209) for  6.x and 6%. Retain- 
ing in the expressions for  bx only t e r m s  associated with instrumental  e r r o r s ,  
we obtain from (1,150), (2.73), and (2.209) respectively: 

Let us  compare Eqs.  (1.141)> (2.70), (2.208), which a r e  the respective 

Let us  now compare Eqs.  (1.150), (2.73), and (2.209), which a r e  the 

[(mi- 0; + pz) cos vt + bwc A- 1 
<<;-<,? { ' - m 

- Y  

(2.247) 

98 



5 f.5. NAVIGATION A K D  INSTRY11EST.lL EFWTR.; 

Similarly from (1,150), (2.209) 

( 2 . 2 4 8 )  

F rom the f i r s t  equalities in (2.247), (2.218) we s e e  ( a s  already noted 
above) that in an autonomous sys tem the e r r o r s  6x, 6.z associated with t h e  
instrumental  e r r o r s  An,, An,. Am, increase exponentially with t ime. Of main 
interest  a r e  the second and third inequalities in (2.247). For a two-accelero- 
me te r  sys tem,  a s  we s e e  f rom the second equality, 6x  only depends on I n r r  
and 

(2.249) 
I 

For a three-acce lerometer  sys tem with al t imeter  correction, the e r r o r  
I\X depends on the e r r o r s  Anz and Anty, as well a s  on I n x s  and w e  have the 
estimate 

I b X / < - - I -  , (21 Jn, i +I Anz + 2 r o y h ,  1) .  (2.250) 

F r o m  (2.249), (2.250) we s e e  that the maximum part ia l  e r r o r  associated 

oi, - o; 

with the factor An, i s  the s a m e  in the two alternative sys tems with al t imeter  
correction. Note that the second relation in (2.248) also leads to anes t imate  
s imi l a r  to (2.250): 

(2.251) 

In the case  of slow motion, i.e., for  velocities much less than thecircular  
velocity, w e  have the following approximate equalities f rom (2.247): 

(2.252) 

(2 253)  
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Comparison of the f i r s t  and second relat ions in (2.252) shows that in case  
of slow motion along the a r c  of a fixed-orientation grea t  c i rc le ,  a two- 
accelerometer  system should be prefer red  to a three-accelerometer  sys tem 
with al t imeter  correct ion,  s ince for  equal accelerometer  e r r o r s  the maxi- 
mum e r r o r  6,c in the f i r s t  sys tem may be sma l l e r .  This  conclusion also 
emerges  from a comparison of e r r o r s  in slow motion along a parallel .  

At velocities c lose to the c i rcu lar  velocity, and in par t icular  for satell i tes,  
the situation i s  somewhat different. 
(1.96), (2.28), and (2.16) for  Keplerian motion. 

inertial  system, we have from (1.153) 

Let us  conrpare the solutions of Eqs. 

F o r  simplicity, consider motion in a c i rcu lar  orbit .  F o r  an autonomous 

3 + 4 ( 1  -coswd) + 
2 1 

(2.254) 

I 2 Anx 6.z = -? (o,t - sin o,t) + * 1 - cos qt). 
(en 0; ( 

For a two-accelerometer system, w e  have from (2.76) or  from (2.105), 
(2.120) with zero  initial conditions 

D s  - Sn f z  An -am, Amz (1 - C 0 S O " l ) .  (2.255) . 
Finally, for a three-accelerometer  sys tem with al t imeter  correct ion,  we 

have from (2.211) o r  f rom (2.105), (2.231) 

6.r = 3 L  (1  - cos 2w,,f) + 
4 0 3  

+ (2 + 2) (sin 2 q t  - 2 ~ ) .  

Any - ao, Am, 
6y = (1 - c o s w , t ) ,  

0; 
(2.256) 

Comparison of (2.254), (2.255), and (2.256) shows that the three-accelero-  
meter  system with al t imeter  cor rec t ion  gives the least  e r r o r s  for asa te l l i t e  
in a c i rcu lar  orbit .  
to time, whereas  in the other two al ternat ives  the expression for  6% i s  a 
parabolic function of t ime.  
and to near-Keplerian motion. 

In this case  the e r r o r s  6x and 6z a r e  only proportional 

This  resul t  i s  a l so  applicable to elliptical o rb i t s  

2.5.3. Altimeter e r r o r s  

We have so f a r  discussed the dependence of ax, ay, 62 on the e r r o r s  of 
the sensitive elements of the inertial  system, i.e., An,, An,, An,, Am,, Am,. Am,. 

I O 0  



However, if t h e  i n e r i a l  system uses  external information on the distance h 
f rom the Earth 's  surface,  additional e r r o r s  a r e  introduced due to the 
inaccuracy Ahi=Ari  in this guidance information. Let us  compare the 
errors  b x ,  hy, bz associated with Ar in the two alternative sys t ems  with alt i  - 
mete r  correction. Viithout this analysis,  our  understanding of t h e  pFrfor- 
mance of the two sys t ems  is fundamentally incomplete. 

If 
necessary,  we may naturally consider the case  of variable \ r ,  with known 
function \ . , ( I ,  since !:he corresponding solutions of Eqs.  (1.961, (2.28) and 
(2.16) have been derived in the previous sections for  a r b i t r a r y  l r .  

r e m a r k  is eqJally applicable to the instrumental  e r r o r s  of the sensit ive 
elements.  

A constant e r r o r  Ir  in a two-accelerometer system does not lead to 
additional e r r o r s  6.r. 6y for  a stationary object. 
The s a m e  resul t  i s  obtained for  motion with constant velocity along the a r c  
of a fixed-orientation great  c i rc le ,  a s  w e  see from (2.73). 
can be established without using the solutions (2.70), (2.73). 
show that for  a stationary object and fo r  motion along the a r c  of a great  
c i rc le ,  

to additional e r r o r s ,  a s  we see from (2.94):  

4 s  i n  the c a s e  of ,instrumental errors, we consider only constant l r .  

This  

This  i s  evident from (2.70). 

Incidentally, this 
It suffices to 

\r drops out from the right-hand s ides  of Eqs.  (2.28). 
The case  of motion along a parallel  in a two-accelerometer system leads 

(2.257) 

For a satell i te in a c i r cu la r  orbit, two-accelerometer sys t ems  do not 
acquire additional e r r o r s ;  this w e  see from (2.75). 
motion an additional e r r o r  6x  a r i s e s .  
have from (2.120) 

In c a s e  of elliptical 
Thus, for  a low-eccentricity orbit  w e  

6x  = - 2e Ar (sin vt  - v t )  (2.258) 

In a three-accelerometer  system, w e  have for  a stationary object 

This  follows f rom the third relation in (2.208). 
For motion along the a r c  of a great  c i rc le ,  w e  have from (2.209) 

6y =: 0. \ 

For motion a!ong a parallel  
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Finally, for  a satell i te in c i rcu lar  orbit, we have f rom (2.211) 

,, 
3Ar 

( s i n 2 G  - 2od). 

6y = 0. 

6 2 = 7 - ( 1  -cos2od). 

(2.262) 

We should make one r e m a r k  concerning the e r r o r s  6% in a th ree-  
accelerometer  system, i.e., equality (2.259), the second equality in (2.260), 
the third equality in (2.261), and the second equality in (2 .262) .  

The altitude h i s  received f rom an external  source  of information. Given 
the h and the position of the object re la t ive to the Earth,  the sys tem com- 
putes r .  The e r r o r  in this computation i s  A r ( = A h ) .  Naturally the e r r o r  b~ 
in the determination of r with the accelerometer  *nz, which i s  in a way 
equivalent to Ar, i s  l a rge r  than the la t te r .  Thus, according to (2.259) it 
may reach  62=6Ar. This  a lso follows from the las t  re la t ions in (2.260), 
(2.261). According to the second equality in (2.262), the maximum h may 
reach  3 Ar12. Therefore ,  the distance f rom the Ear th ' s  cen ter  should be 
inferred from the altitude h received by the inertial  sys tem f rom external  
sources  with e r r o r  i l r ,  and not f rom the r e su l t s  of integration of the acce le-  
rome te r  readings n x r  which may give an e r r o r  six t imes  a s  large.  It follows 
from the preceding that 6x and 6y a r e  the only significant e r r o r s  among 
( 2.2  60) - (2.2 62) . 
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3 . 1  , I  
the pendulum axis  caged to the geocentric ver t ical  

T h e  condition.; of a re la t ive equilibrium ;vith 

<'onsider a rigid h d y  5.vith a n  axis  of d?-narnic symn1eti-y tvhich is pi\.oted 
We a r e  thus OII one ( ~ f  the point- 0,' 1 1 s  ax t3 ,  o 1 h c . t .  than t t i c  Center of mass. 

dea Ling ;v i t t i  R symrr.etric physical penduluni. 

r t o n o f  the pendulum svn ime t ryax i s  a! anyt ime in this sys t em i s  determined by 
the pendulum parameters ,  the initial conditions of pendulum motion relat ive to 
the pivot, the law of motion of the pixwt, and the Ear th ' s  gravitational field. 

I n ~ h a t  f01lows~ir.e will be mainly concernedivith appropriate  choice of the 
pendulum pa rame te r s  such that i ts  ax is  remains  caged to the direct ion to the 
Earth 's  center ,  i.e., to the geocentr ic  ver t ical ,  i r respec t ive  of the motion of 
the pivot. 

This  problem x-as f i r s t  con.:idered by Max Schuler.':: He t rea ted  the motionof 
a pendulum at a constant dis tance f rom the Ear th ' s  cen te r  0, in a plane of fixed 
Clrientation through 0, assuming a cent ra l  gravitational field. In h i s  analysis ,  a 
special  choice of pa rame te r s  was found to ensu re  invariable attitude of the pen- 
dulum axis  of symmetrvalong the geocentr ic  ver t ical ,  provided that the t \vo  
d r rec t ions  coincided init ially.  Generalizations of this theorem of analytical 
mechanics w e r e  the subject of numerous fur ther  s tudies ,  including the work of 
B.V. Bulgakov and A.Yu. Ishlinskii. 
conditions to  be sat isf ied by the pendulum pa rame te r s  and the init ial  conditions 
so that the ax is  of dynamic s y m m e t r y  invariably point along the geocentric 
ver t ical  in any motion of the pivot at constant dis tance f rom the Ea r th ' s  cen te r .  

Schuler ' s  theorem provided the foundation for iner t ia l  navigation. Iner t ia l  
na\?igation s y s t e m s  were  f i r s t  developed as mechanical devices simulating 
the Schuler pendulum. 
gyrocompass horizon and the two-gyro ver t ical .  

In  thi. f inal  analysis ,  a mechanical device which fixes the direct ion to 
the Ear th ' s  cen te r  i s  equivalent to the two-accelerometer iner t ia l  sys t em 
considered in the previous sect ions.  Indeed, given this  direct ion p lus  

Suppose the pivot of the pendulum is movrng i n  the 0,: ' 1  I axes .  The or ienta-  

Ishlinskii"?' r igorouslydetermined the 

Class ica l  examples are the Geckeler-Anschutz 

le:, .\.I. Die Stqjhrung \-on Pendel 'Jnd Kreiselapparaten durch die Beschlunigung der Fahrzeuges. - 
Ph;,sikallsche Zenschrift. \-ol, 24, No. 16, Leipzi&. 1 9 3 .  

*,'stcinatika L ?lekhanika. V d .  213,  SO.'^. 1356. 
* * I  i h  I i n ? K  i i .  . i . Y u .  Rslativ? c4urlibriiim ,of a physical wnd~ilum w t t h  a movmg p ~ v c t .  - Prtkladnaya 
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information on the distance r f rom the Ea r th ' s  center ,  we can effectively 
solve the problem of navigation. The sys tem only requi res  additional gyro- 

scopes in o r d e r  to determine the orientation of the 
geocentric ver t ical  in the Ol&t, axes .  
navigation in a coordinate system fixed to the 
Earth,  the sys tem also needs a clock so a s  to 
account for  the variation in the position of the 
O&.q,t, axes  re la t ive to the Ear th .  

is much more  fundamental than a m e r e  s imi la r i ty  
in the final resu l t s .  
the equations of oscillation of the Schuler pendulum 
and i t s  analogs about the position of re la t ive equili- 
br ium precisely coincide with the first group of 
differential e r r o r  equations of a two-accelerometer 
inertial  system. 
significance since the propert ies  of the Schuler 

For  

The analogy between these systems,  however, 

A s  we w i l l  s ee  in the following, 

This analogy is of par t icular  FIGURE 3.1. 

pendulum a r e  readi ly  amenable to exact analysis. 

Schuler pendulum: we should find the conditions under which the dynamic 
symmetry  axis of the pendulum is caged to the geocentric vertical ,  and 
fur ther  der ive and analyze the equations of motion of the dynamic symmetry  
axis about this position of re la t ive equilibrium. 

pendulum we associate  the axes O x y r  (F igure  3.1), the origin coinciding with 
the point of suspension and the axis  z directed along the pendulum symmetry  
axis, away f rom the center  of m a s s  c . 
m a s s  a r e  thus 

Two problems have to be solved in connection with the propert ies  of the  

Let us  consider the f i r s t  of the two problems above. With the physical 

The coordinates of the center  of 

X ,  = y,=o, r c = - a .  

The Oxyz axes  a r e  directed along the principal axes  of the ellipsoid of 
inertia'of the pendulum. 
has a dynamic symmetry  axis.  

This  is an ellipsoid of revolution, a s  the pendulum 
The moments of inertia of the pendulum a r e  

J x y  = Jyz J,, = 0 ,  Jxx = Jyy = A,  Jzz = C. 

The equations of motion of the pendulum a r e  best written in the 0grl.L 
axes with the origin a t  the point 0 and the axes paral le l  to the O,kr& axes, 
maintaining fixed orientation relat ive to the distant s t a r s .  To wri te  the 
equations of motion, we use the theorem of the angular momentum. Since 
the Ogq,& axes a r e  in uniform rect i l inear  motion relat ive to the inertial  
space, the theorem of the angular momentum is written in the usual form: 

where K i s  the angular momentum, and M i s  the resultant external  torque 
on the pendulum. 

Using Eqs.  (3.21, we get 

K, = Ao,, K, = Ao,. K, = CO,, 
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where a+. w,. (+)< are the projections of the absolute angular velocity of the 
pendulum on the OX?-. axes.  

Project ing Eq. ( 3 . 3 )  on the s. y, 3 axes,  we get Euler ' s  equations 

( 3 . 5 )  

In Eqs. ( 3 . 5 ) ,  .!It ,  . I f , .  .)I, are the s. :*. z projections of the r,esultant torque 
about the point 0 of the forces  applied to the pendulum. 
Ottl.', in which Eqs .  ( , 3 . 3 ) ,  ( 3 . 5 )  are wri t ten are moving axes,  t ranslatory 
iner t ia l  fo rces  and Cor io l i s  forces  must b e  taken into consideration together 
with gravitation and react ion forces  in calculating the torques. The tcrque 
of the react ion force  i s  zero,  s ince the react ion is along a line through the 
point 0 ( a  f r ic t ionless  pivot is  assumed) .  The Coriol is  forces  a r e  a l so  zero,  
s ince  the O;,II,:, system moves uniformly and rect i l inear ly .  For  this reason  
the iner t ia l  forces  of each m a s s  element of the pendulum a r e  a l l  parallel, and 
can be reduced to a resul tant  force Q applied to the center  of mass e .  
Ear th ' s  gravitation is  a s sumed  to be homogeneous ivithin the volume of the 
pendulum. Writing m f o r  the m a s s  of the pendulum, we thus have for  the 
resul tant  gravitational force'; 

Since the axes  

The  

F = mg; i 3 . 6 j  

this force  is applied to the center  of m a s s  and ac t s  in the direct ion of the 
Ear th ' s  gravitation at the point 0. The  magnitude Ig[ i s  a l so  evaluated in 
this c a s e  a t  the point 0. 

Using the above r e m a r k s  and Eqs .  (3.1). w e  obtain for the torques 

. I I ,=G(F,+Q,I ,  .!I,= - u ~ F ,  + Q.r~ ,  .11,=0. (3.7) 

Now let the dynamic symmet ry  axis  point fixedly to the Ea r th ' s  cen ter .  
The  point of suspension 0 moves at constant distance r f rom the Ea r th ' s  
center ,  and the Ea r th ' s  gravitational field i s  spherical .  Then 

F ,  = F ,  = 0. ( 3 . 8 )  

Fur ther ,  
Q, = - m a , .  Q, = - m w y ,  

Q, = - mw,. ( 3 . 9 )  

where  w+, cly, a, are the projections of the absolute accelerat ion of the 
point 0, 

(3.10) 

(3.11) 

I d c  

dV 

d t  

ctx = I + 0 v - a Zt dt  Y 2 2 )" 

w y  = 2 + O,V+ - O r U z .  

wz = 2 + ozvy - oyvz. 

Since the z axis  points to the Ea r th ' s  cen te r  and r = const, we have 

vx  = my. vy = - ray.  vI = 0. 

'The effect of the resultant gravitational tonlue w i l l  be discussed later. 
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Inserting (3.8)-(3.11) in Eqs.  (3.7) and then in Eqs.  (3.5), we obtain the 
following equations of relative equilibrium of the physical pendulum in this 
case:  

I i :I- mar I (+ - wY(oz ) -+ coYo, = 0, 

(3.12) 

Eqs.  (3.12) should be identically satisfied.  For  a r b i t r a r y  0,. wy, o, this 
can be achieved only if 

;;;;;-=r, A c=o. (3.13) 

The f i rs t  equality in (3.13) i s  Schuler 's  famous condition: the reduced 
length of the physical pendulum should be equal to the Ea r th ' s  radius .  The 
second equality fur ther  r equ i r e s  that the ent i re  m a s s  of the pendulum be 
concentyated on the z axis.  
lent condition. 

This  requirement can be replaced by an equiva- 
For  C # 0,  we have from the third equality in (3.12) 

o, = 02 = const. (3.14) 

If we now take w:= 0, the f i r s t  two relations in (3.12) a r e  satisfied for  any 
C i f  the first condition in (3.13) is met .  
absolute angular velocity of the pendulum on the dynamic symmet ry  axis  is 
ze ro ,  

In this c a s e  the projection of the 

(d2 = 0: = 0. (3.15) 

Condition (3.15) and the second condition in (3.13) can be combined into 

(3.16) 

a single equality: 

K, == co, = 0. 

Note that (3.15) r e f e r s  to the choice of the initial conditions. The other 
initial conditions a r e  the following: initially the dynamic symmet ryax i s  of the 
pendulum should point to the Ea r th ' s  center  and the initial values a:, 0; should 
be such that initially the r a t e  of turning of the pendulum z axis  in space i s  
equal to the r a t e  of turning of the radius-vector r f rom the E a r t h ' s  center  
to the pivot. 

ensure a s ta te  of relative equilibrium in which the dynamic symmet ry  axis 
of the pendulum fixedly points to the Ea r th ' s  center,  for  any motion of the 
pivot at a constant distance f rom the Ea r th ' s  center .  

i s  a n  infinitely thin rod or i f  ( a ) * =  0.  
mathematical  idealization and cannot be built in pract ice .  
requirement,  however, a lso leads to an unfeasible Schuler pendulum. 
Indeed, consider a pendulum in the f o r m  of a ring 0.5 m in diameter ,  with 
i ts  pivot distant a f rom the center  of mass .  Now, i f  the f i r s t  condition in 
(3.13) i s  to be satisfied, a should be of the o r d e r  of O . O l c ( ,  and the pendulum 
i s  c lear ly  unfeasible. 

Conditions (3.13), (3.16) and the particular choice of the initial conditions 

A s  w e  have noted above, condition (3.16) is sat isf iedei ther  if thependulum 
In the f o r m e r  case,  the pendulum is a 
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Out. i n t e r e s t  in the Schuler pendulum is mainly a s  an analog of a cer ta in  
c l a s s  of inertial  navigation systems.  
cissume that conditions (3.13). (3.16) a r e  satisfied, without considering the 
practical  or the physical ( a s  in the c a s e  C = 0) feasibility of the correspon-  
ding pendulum. 

tional field. 
pendulum sees additional torques ~ c h i c h  can be appropriately compensated. 
Let 

In the following we will therefore 

The previous treattnent was ca r r i ed  out assuming a spherical  gravita- 
If we remove t h i s  res t r ic t ion and a l so  permit a variable r ,  t h c  

dr 
r = r ( t 4  v = = ~ .  F , & O ,  F,+O.  13.17) 

Assuming condition (3.15) to be satisfied,  we obtain instead of t h e  f i r s t  
tbvo equalities in (3.12) 

(3.18) 

Eqs .  13.18) should be identically satisfied,  i r respect ive of w ~ ,  (,>$,. This  
leads to the condition 

A - m o r  =U, (3.19) 

and the compensating torques .\I;. .!IC should be formed in such a way that 
t h e  right-hand s ides  of (3.18) vanish. 

constant r .  
possibility is to satisfy condition (3.19) for  some  r' =cons t ,  and introduce 
suitable additional torques so that the total compensating torques take the 
form 

In (3.19) r i s  variable, whereas  Conditions (3.18) were derived for  
The result ing difficulties can be bypassed in two ways. One 

(3.20) 

Another possibility is to replace the pendulum by a mechanical system 
with a constant moment of inertia A and a cen te r  of m a s s  c ( a t  the point 
(: j_ = - ci) moving in such a way that 

(3.21) 

or, conversely, a system with constant u and variable A in accordance with 
Eq. (3.19): 

A = mur ( t ) .  ( 3 . 2 2 )  

A.1 appropriate mechanical system can be visualized a s  a pendulum with 
hollows in which suitable m a s s e s  move in accordance .with conditions (3.21), 
(3.22),*' without displacing the dynamic symmet ry  axis  f rom the axis  z. 

* .Ai tcr rriatlie velocltles .,f these masies ace small .  the Coriolis force: are of course negltsible. 
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Consider the following example in which Eq. (3.21) i s  satisfied.  
pendulum with a cylindrical  cavity along the z axis  (F igu re  3.2), with two 
eqdal m a s s e s  m ,  moving on the two s ides  of the center  of m a s s  c .  
distance of one of these m a s s e s  (e.g.. that lying between the pivot 0 and the 
center of m a s s  c )  f rom the center  of m a s s  be s, and the distance of the 
other y. 
inertia and the coordinate z, of the center  of mass:  

Take a 

L,et the 

W e  then obtain the following expressions for  the total moment of 

( 3 . 2 3 )  

Taking A -- A(, = const, we obtain f rom the f i r s t  relation in ( 3 . 2 3 )  the 
equation of a c i r c l e  shown in Figure 3 . 3 .  
i t s  center  l ies  a t  the point x = = u .  )I=--". The second equation in (3 .23 )  is 
the equation of a straight line 

The radius of this c i r c l e  i s  a \fi, 

m , ( 3 . 2 4 )  - c  a = -  L", + m (Y - x ) .  - -  

On the a r c  of the c i r c l e  in the f i r s t  quadrant, 2 , - a  takes on the values 

0 >/ zc - u \ 2nm, ( 3 . 2 5 )  
I m ,  + m  * 

Thus, leaving A constant, we can satisfy condition ( 3 . 2 1 ) .  If condition 
(3.21) is satisfied, the compensating torques (3 .20 )  take the s imple form 

.M! = - a [ F, + 2m0, x) dr , M b  = a (- F ,  + 2mo, -$). ( 3 . 2 6 )  

The feasibility of condition (3 .22 )  is a l s o  obvious. To satisfy this condi- 
tion, we need only place four m a s s e s  in a plane normal to the dynamic 
symmet ry  axis; these m a s s e s  should lie on two mutually perpendicular l ines 
meeting the dynamic symmetry axis,  a t  equal distances f rom the axis .  

In this c a s e  a is constant, and the equatorial  moment of inertial  A can be 
made variable, so a s  to ensure condition ( 3 . 2 2 )  
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For variable A ,  w e  obtain from the vector equation ( 3 . 3 )  

LVhen condition ( 3 . 2 2 )  is satisfied, 

( 3 . 2 7 )  

( 3 . 2 8 )  

Therefore,  if ( 3 . 1  5) or  ( 3 . 1 6 )  i s  a l so  satisfied, the compensating torques 
a r e  given by the equalities 

In ( 3 . 2 1 ) ,  ( 3 . 2 2 ) ,  o ~ l y  one of the two pa rame te r s  a and .i was assumed 
variable. 
simplified: the second t e r m  in parentheses can be eliminated. Indeed, let 
u be proportional to r .  Then 

If they a r e  both variable, the compensating torques can be fur ther  

( 3 . 3 0 )  A = m a r ,  a = k r .  

Hence 

(dr 
< I t  2 " a - .  -= ( 3 . 3 1 )  

The compensating torques now depend only on the projections F,, F ,  of 
t h e  gravitational force: 

Mi = --aF,,  ,MI=aF, 

The problem of forming the compensating torques is equivalent to the 
problem of forming the nonspherical component of the Ea r th ' s  gravitational 
field in the equations 'of inertial  navigation. The fo rces  F,, F ,  are functions 
of the coordinates of the pivot 0 relative to the Ea r th  and the orientation of 
the axes  x y r  relative to the Earth.  We can form these torques only i f  the 
pendulum together with the gyroscopes constitute a navigation system which 
actually measu res  the relevant coordinates and orientation. 

pa rame te r s  of the pendulum (or of some  mechanical sys t em satisfying 
conditions (3.21), ( 3 . 2 2 ) ,  ( 3 . 3 0 ) )  so that the dynamic symmet ry  axis  i s  caged 
to the gravitational force (or the force of gravity), and not to the geocentric 
vertical ,  for  any motion of the pivot O ?  If this were  so, the compensating 
torques ( 3 . 3 2 )  would become superfluous. This  c l ea r ly  cannot be achieved 
by varying A and u ,  since they a r e  a l ready constrained by the two conditions 
( 3 . 3 0 ) .  In some  cases ,  however, an approximate solution nevertheless can  
be obtained. If instead of eliminating the compensating torques w e  l ea rn  to 
form them a s  specified functions of coordinates and time, any orientation of 
the dynamic symmet ry  axis  can  be made a position of relative equilibrium. 

( 3  3 2 )  

Another point should be considered in this context. Can w e  choose the 
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In conclusion note that in o r d e r  to sat isfy conditions (3.19), (3 .21 ) ,  (3 .22 ) ,  
( 3 . 3 0 )  for  variable r ,  we require  external information on the distance r .  
The pendulum system itself cannot measu re  this distance internally. Clearly, 
r can be determined if  the altitude h of the pendulum pivot above the Ea r th ' s  
surface is known ( f rom al t imeter  readings).  
ver t ical  i s  a lso known, the Schuler pendulum (combined with gyroscopcs) 
can be used to measu re  the coordinate of the moving pivot relative to the 
Earth 's  surface.  Using Eq. (2 .3 )  for  known / I ,  we can find r .  The situation 
thus essentially reduces to that in an inertial  system with al t imeter  
c o r  r e c ti on. 

Since the direction of the 

3 . 1 . 2 .  
pendulum about the relative equilibrium 

Equations of sma l l  oscillations of the Schuler 

Let us  now consider perturbed motion of the Schuler pendulum, i.e., 
oscillations about a position of relative equilibrium. 
most general  case,  when conditions ( 3 . 3 0 )  a r e  satisfied.  

W e  will consider the 

2 
FIGUKE 3.4. 

W e  will u se  xo)inz,, to designate the .tyz axes  fixed to the unperturbed 
pendulum. 
axes x y t ,  is described by the angles u. 13. p (F igu re  3 . 4 ) .  The direction 
cosines  between the axes n, y ,  z and xo. ~ ' 0 .  zo thus fo rm the followingmatrix: 

The perturbed position of the pendulum, o r  equivalently of i t s  

X Y 2 

xo cospcosy -sslnaslnflslny -cosasiny sinHcosy : slnacospsiny 

yo cospsiny $- sinasinpcos y sin fi sin y - sinacos p cosy 

cos a cos p. ZO - cos (1 sin fi  sin a 

( 3 . 3 3 )  
cos a cos y 

Let u s  f i r s t  consider the case  of small angles a and 0 ,  when ma t r ix  
( 3 . 3 3 )  takes the s imple r  fo rm 

.t y 2 

xn 1 - - Y  B (3 .34 )  
Yo Y ' - - ( I  

Z(, - p (1 I .  
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To descr ibe the perturbed motion of the pendulum, we r equ i r e  only 
equations €or the angles  u ,  p, and y, which can  be obtained from Eqs.(3.27). 

Let the projections of the absolute angular velocity of the unperturbed 
pendulum on the -Y.,J~,~&. axes  be u.~. (r).I.,, io?,. The left-handsides of Eqs.  (3.27) 
contain the projections w , ~ .  w,. o ) ~  of the absolute angular velocity of the 
perturbed pendulum on the axes  x ,  y. z .  In accordance w i t h  13.34), we have 

(3.35) 

T o  find the torques ,LlX, .If,,. .M, entering the right-hand s i d e s  of Eqs.  (3.27), 
w e  need the projections at,, wY. wZ of the accelerat ion of the point 0 on the 
axes  x .  y. I: 

(3.36) 

Here,  in accordance with Eqs.  (3.10), (3.11) and the second equality in 
3.17), 

(3.37) 

The torques z%lzv ,VJv. .\I, of the perturbed pendulum include the torques of 
h e  t ranslatory iner t ia l  fo rces  on the pivot 0, the gravity torques, and the 

additional compensating torques.  Therefore ,  using (3.7), (3.32), w e  wri te  

. I ~ , = a ( F , + Q , ) - a a P , ,  

= - a ( F x  + Q,) + a F, , 
IW, = 0. 

(3.38) 

Here  the iner t ia l  fclrces Q,, Q,. Q, are given by Eqs.  (3.9) with wX.  wY. vtz 

For the projections F ,  and F,, using the table of direction cosines  (3.34), 
substituted from (3.36). 

w e  obtain expressions s i m i l a r  to the f i r s t  two in (3.36): 

Combining (3.38), (,3.39), we get 

(3.39) 

(3.40) 

We now inse r t  in Eqs.  (3.27) the anguIar velocities a,, a,, a, f rom (3.35) 
and the torques M,, My, M, f rom (3.40), (3.9), (3.36), (3.37): 
manipulations, dropping t e r m s  of second o r d e r  i n  a. p, y and their  
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(3.41) 

oz, - oy,a + oxp + j = w:o - w;oan + + +’= const. (3.42) 

Here  the superscr ip t  0 designates, a s  before, the initial values of the 

Let the pendulum parameters  sat isfy conditions (3.15), (3.30). However, 
corresponding var iables .  

there  i s  a cer ta in  inaccuracy in these equalities, so that 

I 0’’ = Amyo, A = ma ( r  + A r )  + A A .  

a = k ( r  + A r )  + Aa. 
(3 -43) 

where Ar i s  the e r r o r  in the distance r f rom the Ea r th ’ s  center ,  i.e., the 
error of the external  source  of information on r used in forming conditions 
( 3.3 0). 

In Eqs .  (3.43) ha and AA a r e  the instrumental  e r r o r s  for  (3.30). W e  w i l l  
not consider  other  e r r o r s ,  e.g., those associated with nonzero products of 
iner t ia  and imperfect dynamic symmetry  of the pendulum. 
Schuler pendulum is only considered a s  an analog of actual  iner t ia l  naviga- 
tion sys tems,  whereas  effects associated with products of iner t ia  and 
dynamic asymmetry  a r e  charac te r i s t ic  of the Schuler pendulum a s  such. 
Note, however, that any other  e r r o r s  in pendulum parameters  can always 
be reduced to some equivalent e r r o r s  ha and A A .  
equivalent to the fundamental instrumental  e r r o r s ,  which were  previously 
introduced in the analysis  of e r r o r  equations of inertial  sys tem.  

After all, the 

The la t te r  a r e  apparently 

Starting with Eqs .  (3.43), we wri te  

d A a 2 a m ;  + 2 m a A ; + 2 m k ; A r + m ; A a +  m r A a + A A .  

A - amr = a m  Ar 4- AA. 
dt (3.44) 
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F r o m  the integral  (3.42) and the f i r s t  equality in (3.43) we fur ther  have 

Inserting (3.43), (3 .44) ,  (3.45) in the f i r s t  two equations in (3.41), we omit  

Collecting and s impli-  
t h e  second-order  products of the instrumental  e r r o r s  A o ,  I..! and their  t ime 
der ivat ives  with the sma l l  angles  a. 0. y. 4. 6. i. u. 6. 
fying, w e  obtain dividing through by ma 

(3.46) 

Clear ly  if Iu=1.4=1r=Aufia= 0, Eqs .  (3.46) have the t r ivial  solution 
a=fr=O whenever aO-fi"=yO=&"=$=$= 0. Thisaga inconf i rms  thatunder  
conditions (3.15), (3.30) the dynamic symmetry  axis  of the pendulum i s  
fixedly directed to the Ea r th ' s  cen ter  i r respect ive of the actual  motion of 
the pivot, provided th i t  initially the axis of the pendulum pointed in that 
direct ion and i t s  orientation changed at the appropriate  r a t e .  

h'e will now expand the t e r m s  Fz,a- F,,y and Fzp-Fyuy in Eqs.  (3.46). To 
this end note that according to (1.40) 

F = m grad L' = m (5 +grad E), (3.47) 

where E i s  a sma l l  parameter  which charac te r izes  the nonspherical compo- 
nent of the Ear th ' s  gravitational field. Hence, 

(3.48) 

The products 

agrad,,e. pgrad,,&, ygrad,*&, "grad, E (3.49) 

are  of second o r d e r  of smal lness ,  and we may therefore  take 

(3.50) 

Note that the neglect of the t e r m s  (3.49) i s  equivalent to ignoring the 
variation of the nonspherical components of the Ea r th ' s  gravitation in the 
derivation of the f i r s t  group of differential  e r r o r  equations. 
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(3.51) 

W e  have considered the case when conditions (3.15), (3.30) are sat isf ied.  
Let u s  now consider  the case  when condition (3.30) and the second condition 
in (3.13) are satisfied,  i.e., when the pendulum is an  infinitely thin rod. 
Here  condition (3.30) is sat isf ied by a cer ta in  displacement of m a s s e s  along 
the z axis;  the par t icular  mechanisms used to sat isfy conditions (3.15) is of 
no relevance for  our  discussion. 

Let the equality C = 0 be satisfied with a cer ta in  e r r o r ,  s o  that 

c = AC. (3.52) 

From Eqs.  (3.41), Eq.  (3.42), the second and third equation in (3.43), and 
Eqs .  (3.44), (3.50), (3.52), acting along the same lines as in the derivation of 
Eqs.  (3.51) and retaining only f i r s t -order  t e r m s  in u and p ,  w e  obtain the 
equations 

(3.53) 

The homogeneous equations (3.53), like Eqs.  (3.51), have a t r ivial  
For oz, = 0, the homogeneous equations (3.53) a r e  readi ly  

Moreover ,  if we take wzo = 0 in the right-hand 
solution u=P= 0 .  
seen  to reduce to Eqs .  ( 3 . 5 1 ) .  
s ides  of Eqs.  (3.53), the t e r m s  with A r .  A u ,  AA ( instrumental  e r r o r s  of 
common origin in the two cases )  in the right-hand s ides  reduce to the 
corresponding t e r m s  in  the right-hand s ides  of Eqs .  (3.51).  

I I4 



.I. 9 ~ H ~ I L L R  PEhUCLCl I  

3.1.3. 
pendulum about a position of relative equilibrium: 
the c a s e  of finite angles 

Equations of free oscil lations of the Schuler 

Eqs.  (3.51),  (3.53) w e r e  derived assuming s m a l l  angles a, 6. y,  i .e. ,  these 
equations only descr ibe s m a l l  oscil lations of the Schuler pendulum about the 
relative equilibrium . 

L.ct us  now consider  the equations of perturbed motion of the pendulum 
for finite angles ( r ,  p. y . We will only discuss  the homogeneous equations, 
i .e. ,  the equations of free oscil lations.  Th i s  is quite sufficient, a s  we shal l  
see, for  the purposes of establishing the analogy between the Schuler 
pendulum and the two-accelcrometer inertial  sys t em.  

relative to the unperturbed axes  .Y, ,J' , ,~, ,  by the ma t r ix  of direction cosines  
13.33). We a r e  concerned mainly with oscil lations of the ax i s  :, and the 
angle y f rom the s t a r t  can be r e f e r r e d  to the ~y,::,, axes.  (Incidentally, note 
that the angle y does not en te r  the homogeneous equations (3.51), (3.53).)  
The ma t r ix  (3.34) is then replaced by 

The position of the axes  s y t  fixed to the perturbed pendulum i s  determined 

(3.54) 

Let as before w., -), . be the projections of the absolute angular velocity 
of the axes  .Y,,:>,;Z., on the corresponding direct ions.  
A,:.':, are not longer fixed to the unperturbed pendulum, s ince the angle y i s  
r e f e r r e d  to these axes .  Thei,efore, we cannot take 1 , ) :  = 0 in this ca se ,  but 
a s  w e  shal l  see in the following this does not consti tute a significant difficulty. 

The projections of the equations of motion of the pendulum on the axes  
s. y.  2 fixed to t h e  pendulum c a n  be writ ten,  in accordance with Eqs. (3.3),  
(3.7}, in the fo rm 

In this c a s e  the axes  

Here,  using (3.54)., 

Similarly 

Let 

wy = it 

wi = o , ~  sinp -wy,  sinacosg + w2, CUD u cos p+a sin p. 
cos a + wz, s in  u -+ 6 

(3.55) 

(3.56) 

(3.57) 
FX+?.,.=(F,,~Q,~~~ i o s p + ( F y ,  +Qyjs inus ing-  

- ( Fz, + Qd cos u s i n  8. 
Fy -Qv = ( F y ,  f Qy,) cos cr+(F,, + Q1,) sin ct. 

F,, = F y ,  = 0. F.., = - my. 
(3.58) 

r2 

which is equivalent to ignoring the variation of the nonspherical  gravitation 
component. 
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Ch. 3 .  SCHULER-TUNED GYI1OPENDULUhl SYSTEhlS 

W e  a s sume  that the conditions 

A = m u r .  a = k r .  C=O (3.59) 

are satisfied,  i.e., we consider  a pendulum in the form of an  infinitely thin 
rod whose sma l l  oscil lations are  descr ibed by Eqs.  (3.53). 

Using (3.59) we obtain 

K, = maro,. K,  = mGro,. K, = 0. (3.60) 

F r o m  (3.60), (3.56) we get  

(3.61) i Kr=mar (o , , cosp+o , , s inas inP-ow, ,  c o s a s i n ~ + u c o s [ ~ ) .  

K, = mur (my,, cos a + wI ,  sin a f p). 
K, = 0. 

Similarly, f rom Eqs.  (3.57), (3.58), (3.9), (3.37) and ma t r ix  (3.54) we have 

F ,  + Q, = - m { [ r  (Go + mzOoz,> + 2 0 , , h  cos p + 
+ [ r  ( -ox, + O y  (l)zn) - 2o,,,r] sin a sin p - 

(3.62) - [+ + - r (o:o + c ~ ]  cos a sin p } , . 
F, + Q,=-"( [ r ( - -n , ,+Oy,0)20)-20 ,0; lcosa+ 

+[ + + - r  (~9:" +oi,~] sin a } .  

We now inser t  (3.61), (3.62) in  (3.55). After some  manipulations and 
simplifications, using (3.59), we get 

r [ $ + & s i n  p cosp + 2a(w,, s inp cos6 - 
-my+sinacos2p+ozn cosucos2p)+ 

(cosa - cos p)+&,sin a+j , ,s inasin p+ + 
+ (s - w:ocos a cos p - o;,) sin p cos a + 

+ ~ : ~ ( c o s p  - cosaJ sinp - ($,sin*a sin p cosp + 
+ o , , ~ ~ , ( s i n ~ p - c o s ~ p ) s i n a +  

+o,,~o,.(cos2pcosa - c o s ~ - s i n 2 p c o s a ) +  
+ oypzn (2 cos a cos p - 1)  s i n  a sin p1 + 

+ 2; [my, (cos a - cos p) - 20,. s i n  a sin p + 
+ wz, sin a+ t i l +  i cos a sin p = 0, 

r ;1 cosp - &isin  p + 26(- ox, sin p +  

+ oy,sinacosp--o, ,cosacosp) +ciXa(cosp-cosa)+ 

+i , ,s ina sinp - &,cosasinp + 
+ [$ - 0 2  --O;,(I - cosa  cos 6) - cosa cos p] s i n a  - 

XO 

- o,,,oy, cos a sin p - o,,oz, sin a sin p + 
+ oy,,ozO (sin* a cos p - cos* a cos p + cos a)\ + 
+ 2; l o ,  (cos p - cos a)  + o,, sin  a sin - 

-azG cosa sinp +c i  cos p ] +  r s i n a  = 0. 

I I6 
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It  i s  readily seen  that Eqs .  (3.63) have a t r ivial  z e r o  solution. If the 
angles n and p a r e  small ,  the tr igonometric functions can be expanded in a 
s e r i e s  retaining in Eqs.  (3.63) only the l inear  t e r m s  in u. p. rr. b .  
is clear ly  seen  to give the homogeneous equations (3.53).  

pendulum with C = 0 .  If w e  s t a r t  with the condition fi): =w; = 0, and not 
C = 0, Eqs .  (3.55) give expressions which coincide with those obtained from 
E q s .  (3.63) with a.,)l = O .  F o r  s m a l l  U, fi, ;L. f: they coincide to f i rs t  approxi- 
mation with Eqs.  (3 .51) .  

This  result  

Eqs.  (3.63) are the equations of oscil lation of an infinitely thin Schuler 

9 3 . 2 .  THE TWO-GYE.0 VERTICAL .AND THE 
GEC KE LER-ANSC HUT2 GYROCOblPASS HORIZON' 

3.2.1.  The two-gyro Xiertical 

The two-gyro ver t ical  i s  a gyroframe whose cen te r  of m a s s  does not 
coincide with the suspension point of the gyroframe platform. 
right orthogonal axes  Oxyz i s  rigidly fixed to the gyroframe platform, 
placing the origin at  the suspension point, the two gyroscopes will be aligned 
a s  shown in F igu re  3.5. The twoaxles of the gyro c a s e s  l ie  in the plane 12, 
paral le l  to the axis  x,  and the angular momenta of the gyroscopes lie in the 
plane yz. The cen te r  of m a s s  c of the gyroframe i s  on the axis  z at  a 
distance u from the suspension point, s o  that Eqs. (3.1) apply. 

If a s e t  of 

Y 

FIGVRE 3 .3 .  

The gyroscopes a r e  geometrically linked (geared, as shown in Figure 3.5, 
o r  gimbaled), so that the tilt  of each gyro about the c a s e  axle is automatical- 
ly transmitted to i t s  counterpar t .  The angles the two gyro angular momenta 

' I s n l i n s  k i  i ,  A.Yu. The rheoiy of the gymcompass horizon. - Prikladnaya hlatematika i hlekhanika. 
L'ol. 20, No.4. 1956. Theory of the two-gyro vertical, Vol. 21. No 2. 1937. 

I I7 



make with the y axis  are therefore equal in magnitude and of opposite 
direction, so  that the resultant angular momentum is directed along the y 
axis .  

Let R be the angular momentum of each gyroscope. 
angular momentum of the two gyroscopes is then 

The resultant 

H = 2B sin E ,  (3.64) 

where E is the angle between the angular momentum vector and the z ax i s .  

are applied to the gyroscopes by a special  torquer .  These torques a r e  a 
function of the angle E .  Let N be the magnitude of these torques.  In the 
simplest  ca se  the torque N can be set up by a spr ing joining the gyro c a s e s  
a s  shown in Figure 3.5. 

By the theorem of angular momentum, the equations of precession of the 
gyroframe a r e  

Torques of equal magnitude and opposite direction about the c a s e  axles  

- Hm, = M,, = hI,. Hto, = M,. (3.65) 
dt 

where (,),, a, a r e  the projections of the absolute angular velocity of t!ie 
axes x y z  on the corresponding directions,  AI,, ,My, .If, a r e  the resultant 
torques applied to the gyroframe platform about the corresponding axes.  

equation i s  obtained by considering the motion of the gyroscopes about the 
case  axles .  Here  

(3.66) 

The system being considered has  four degrees  of f reedom. The missing 

- u),2f3 C O S E  = N .  

where N is the torque se t  up by the spr ing joining the two c a s e s  ( i t  i s  a 
function of the angle E ) .  

To complete the derivation of the equations of motion of a two-gyro ver t i -  
cal, i t  now rema ins  to find expressions for  the torques . I f , .  M y .  , \ f z .  These  
torques, a s  in the c a s e  of a physical pendulum considered in the previous 
section, a r e  the resultant of gravity torques and t ranslatory inertia torques 
of the gyroframe.  
result ing f rom the nonideal behavior of the sys t em elements  can also be 
taken into consideration. 
torques M,. ,VY. M, can be writ ten in the form 

Additional art if icial  torques or perturbing torques 

In accordance with ( 3 . 7 ) ,  the expressions for  the 

(3.67) 
,v,=a(Fyf Q,Jf.V;. M , = - u ( F , + Q , ) + M ~ .  

M ,  = M:, I 
where F and Q are the gravitation and t ranslatory inertia forces ,  ,\l:, AJf.  M: 
stand for  a l l  the other torques, except those produced by F and Q .  

Inserting (3.64) and (3.67) in (3.65) and adding Eq.  (3.66) to the system, 
we obtain the equations of motion of the sensit ive element of the two-gyro 
ver t  ic a 1: 

I - w,2B S l n E  = a ( F y  + Qy)+ M;, 
d x ( 2 B  sin E )  = - a ( F ,  + Q,)+ M;. 

ox2BslnE= M:, - a w , 2 B c o s ~ = N .  

(3.68) 
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We will now show that f o r  a par t icular  choice of pa rame te r s  and initial 
Let u s  f i r s t  find conditions, this device s imulates  the Schuler pendulum. 

the position of relative equilibrium of the gyroframe with the z ax i s  toward 
the Earth 's  center ,  i r respect ive of the motion of the object.  
i n  this s t a t e  of relative equilibrium will be designated .to):,z,~. 
(3.68),  using (3.37),  (3.9),  w e  then get 

The axes  x.vz 
F r o m  Eqs .  

(3.69) . I  - - : ~ , ~ ~ H i r i e = u i ~ , ,  +mire, - r ~ ~ t : ) ~  + 2 a t r i 1 - j - . \ ~ ; ,  

#I - ~~ ( ~ ~ s i n ~ ~ = - u ( ~ ( ~ ~ , - m c r ; , , t r w , , w ,  + 2 L 6 ) y , ) l + . \ ~ 1 .  

I ' ) ,  -'B>lne = .If;* -my 2 B C O S E  = .v. 
L,e t 

,rr: = 0. (3 .70)  

F r o m  the third equation in (3.69), ignoring the special  c a s e  E = 0, we get 

WI, = v. (3.71) 

The f i r s t  two equations in (3.69) thus take the s imple r  fo rm 

I (3.72) - o , 2 B  s i n e  = Q tF,. - mrw,  0): + .Mz, 
2-1 ? B  s i n  F )  = - u [ F ~ ,  - m ( ru ) .  . + GU;, , )~ + . t ~ i .  'if I 

Let now the torques .ll.: and .IJt be formed according to the equalit ies 

. l l : = - u F ! , ,  . t l ;=aF, , .  (3.73) 

F r o m  the f i r s t  equation in (3.72) we have 

L'B sin E = nmrio; , (3.74) 

and from (3.74) and the second equation in (3.72) 

(3.75) ii - ( u r )  = Air .  
' I f  

It is readily s e e n  that condition (3.75) is satisfied if we take 

u=kr  (3.76) 

To ensu re  this  equality, we c l ea r ly  r equ i r e  additional information on the 

Turning to the las t  equation in (3.68). we apply (3.74) to eliminate wY, and 
distance r f rom the E a r t h ' s  center .  

consequently obtain the following expression for  the torque A': 

.I' - .E- sin e C O S E .  (3.77) mar 

Conditions (3.70), (3.73), (3.74), and (3.76) thus ensure the existence of 
re la t ive equilibrium in which the axis z of the s y s t e m  is invariably caged to 
the geocentric vertical ,  i r respect ive of the par t icular  motion of the suspen- 
s ion point of the platform. This explains the name two-gyro ver t ical .  

I I9 
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If the Earth 's  gravitational field is assumed spherical  and the suspension 
point moves a t  a constant distance f rom the Ea r th ' s  center,  P.eu, FS,  a r e  zero, 
,%I;. '$1: can  be omitted, and condition (3.76) is no longer needed. 
problem thus reduces to conditions (3 .TO) ,  (3.74), (3.77). 

by a simple spring. Indeed, turning to Figure 3.5, let p be the distance 
between the fixed end of the spr ing and the gyro c a s e  and k the force 
constant of the spring. Then 

The 

Note that i f  r ,  and hence a ,  a r e  constant, the torque N can be provided 

(3.78) N = - ?kp2 sin c cos E ,  

assuming that the spr ing i s  relaxed for  E = 0.  Taking fur ther  

(3.79) 

we achieve ou r  a im.  
If now r is variable,  a and p should also vary.  
W e  have established the requirements  to be satisfied by the design pa ra -  

m e t e r s  of the two-gyro vertical .  
requirements concerning the initial conditions of motion. 
follows from (3.71): 

To  these we should naturally add cer ta in  
One of these 

1 4  = 0. (3.80) 

This  implies that the x axis  of the gyroframe should initially l ie in the 
plane through the absolute velocity vector of the suspension point 0 and the 
Ea r th ' s  center  0,. 

F r o m  (3.74), (3.75) w e  further get 

(3.81) 

Moreover, the z axis  of the gyroframe should initially point to the 
Earth 's  center .  

Let us  now consider the perturbed motion of the two-gyro vertical .  
will analyze sma l l  oscillations of the z axis  about the position of relative 
equilibrium assuming that equalities (3.73), (3.74), (3.76 
conditions a r e  satisfied with cer ta in  e r r o r s .  
perturbing torques associated with gimbal imperfection and imperfect 
balance of the platform. 

specified by sma l l  angles a,  6. y in accordance with the matr ix  of direction 
cosines (3.34). Then 0,. coy .  (0,at-e expressed by (3.35), Q,. Q,, Q, by (3.9), 
(3.36), (3.37), and F,, F ,  by (3.39). 

(3 .68)  and introducing the perturbing torques AM2,  AM^, AM, in the right-hand 
s ides  of the equations, we get 

We 

There  a r e  fur thermore 

The perturbed orientation of the x y z  axes relative to the x,,J~z, axes  is 

Inserting these relations in the equations of motion o'f the gyroframe 

(3.82) 
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;;. < 2s .Iii c , = 

:- u i F:J' - F,, y- F ,  i - r a m  [ r  iw, -mt.1dZ.) 2?dv,rl - 

( 3 . 8 2 )  - airpi [ r  - r ( w i  + (.if,)\ p + 
- ctn! [ r  ( - ,:,, + f1t, w: i - ?tot  ;I y + .MY + 1.11~. 

-,.I y - - ~ ~ ~ ~ f i + n ~ ? f ? s i i t >  = \ .\I. .  

- - t < * t ,  - - ( , I t  y - w 2 r c  -~ ( ; I ?BcosF= . \ ' .  

F r o m  the third equation in ( 3 . 8 2 )  we see that < , t c ,  i s  of f i r s t  o r d e r  of small- 
nes s .  
multiplied by another f i r s t -order  quantity. Note that according to the 
definition ( 3 . 7 3 )  of the torques .\I:. . \I*,, the sunis  u F ,  --,\I: and a P .  - . I l l  d rop  
out f rom the right-handsidesof Eqs .  ( 3 . 8 2 ) .  The t e r m s  -aFt  y and - - zF,y  
c a n  a lso he neglected, as they are of second o r d e r  of smal lness ,  and for 

F:  ~ v e  may wr i te  to  the s a m e  approximation --?. After these  simplifica- 

tions, E q s .  ( 3 . 8 2 )  take the fo rm 

Therefore,  in the remaining equations i t  c an  be  omitted whenever 

( 3 . 8 3 )  

Let F, be the value of E corresponding to the  position of re la t ive equili- 
brium: the i s  the corresponding perturbation. hloreover,  let  conditions 
(3 .74) ,  ( 3 . 7 6 ) ,  ( 3 . 7 7 )  be  sat isf ied with some e r r o r s ,  so that 

a = k ( r  +1r jT  h i ,  ( 3 . 8 3 )  

( 3 . 8 5 )  

In Eqs .  ( 3 . 8 4 ) ,  (3 .85: ,  Ar i s  the error of the ex terna l  information on  r .  
The perturbing torque L'i c a n  be  associated,  say, with init ial  deformation 
of the spr ing  between the gyro cases. 

order t e rms ,  we ge t  
Inserting (3.8.1), ( 3 . 8 5 )  in  Eqs. ( 3 . 8 3 )  and retaining, a s  before, only f i r s t  

( 3 . 8 6 )  
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(3.86) 

Eqs.  (3.86) a r e  the equations of sma l l  oscillations of a two-gyro ver t ical  
about the position of relative equilibrium. 
principal instrumental  errors and the e r r o r s  Ar in the external information 
on the distance r .  

These equations allow for  the 

For  

my,  = 0. r = const. Ar = Aa = 0. AAfx = A M ,  = A M z  == A N  = 0 ,  (3.87) 

Eqs.  (3.86) reduce to Ishlinskii 's  equations." It is readily seen  that when 
conditions (3.87) are satisfied, Eqs. (3.86) have the tr ivial  solution 

a = p = y = 6~ E 0. (3.88) 

corresponding to a position of relative equilibrium. 

3.2.2. The Geckeler-Anschutz gyrocompass horizon 

Let us consider another c lass ical  example of a pendulous gyroscope, 
which is a simulation o f  the Schuler pendulum. 
Anschutz gyrocompass horizon. 

This  is the Geckeler- 

FIGURE 3. 6. 

The sensit ive element of the gyrocompass horizon is not unlike the 
sensit ive element of the two-gyro ver t ical .  This  is a combination of two 

See footnote on p. 117. 
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gyroscopes with parallel  c a s e  axles  and gimbal bearings fixed on a common 
rigid platform. 
three-degrees-of-freedom gimbal o r  floated in a liquid in a spherical  c a s e .  
Other suspensions a r e  a l s o  possible, but the particular suspension is of no 
relevance for  further discussion, the main thing being that i t  should ensu re  
t h r e e  degrees  of freedom for  the sensit ive element.  

A set  of right orthogonal axes  0.1.y: is associated with the sensit ive 
element of the gyrocompass.  
platform, the axis  y is normal  to the platform, the axis  3 l ies  in the plane 
of the platform, paralle:. to the c a s e  axles .  The axis  x then meets  the c a s e  
axles and l ies  in t h e  plane through the angular momenta of the two gyro- 
scopes,  

The gyro c a s e  axles  a r e  geared ( F i g u r e  3 .6 )  or gimbaled, so that the two 
gyroscopes turn about t t e  case  axles  through an equal angle i n  opposite 
directions.  This  angle is designated a s  before by F .  If 5 is the magnitude 
of the angular momenturi  of each gyroscope, the resultant angular niomentuni 
is given by 

The gyrocompass horizon platform can be suspended in a 

Its  origin is at  the suspension point of the 

H = PB > ~ r i  i (3 .89)  

anti is directed along the axis y .  
are  joined by a spring. 
the negative : semiaxis  a t  a distance L: f rom the suspension point. 

A comparison of the sensit ive element of the gyrocompass horizon wi th  
that of the two-gyro ver t ical  (F igu re  3.3) reveals  only the following differ- 
ence :  i n  thegyrocompass horizon thecaseax le s  l ie on the .c axis  and a r e  
parallel  to the : axis, whereas in the two-gyro vertical  they lie on the : 
axis  and a r e  parallel  to the .Y ax i s .  Moreover, the center  of m a s s  of the 
sensit ive element of the two-gyro vertical  is displaced in a direction normal 
to t h e  ca se  axles,  where.as in the gyrocompass horizon it i s  displaced along 
the c a s e  axles .  

the precession of the- two-gyro vertical .  Indeed, the precession equations 
a r e  

h ' , = l b ,  h' - . : H = 1 B s t n ~ .  K,=t l .  (3.90) 

A s  for a two-gyro vertical ,  the gyro c a s e s  
The center of m a s s  of the sensit ive element l ies  on 

The precession of the gyrocompass horizon is thus entirely s imi l a r  to 

The theorem of angular momentum gives for  the .c, ::, z projections 

bvhich a r e  supplemented by an  equation 

- *+v,tB ; O S  E = .\'. f 3.92) 

w h e r e  .v is the torque about the case  axles .  
Eqs .  (3.91), (3.92) a r e  fully identical to Eqs .  13.65). (3.66) used in our  

analysis of the two-gyro Tiertical. 
(3.92) therefore leads to the s a m e  relations a s  for  the two-gyro ver t ical .  
Thus, the conditions for  relative equiIibrium of the sensit ive element of the 
gyrocompass horizon a r e  Eqs.  (3.70), (3.73), (3.741, (3.76);  the equations of 
sma l l  oscil lations about t n e  relative equilibrium a r e  Eqs.  (3.86). 

Fu r the r  examinations of Eqs.  (3.31), 
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A s  we have already noted, conditions (3.70), (3.73), (3.74), (3.76) guaran- 
tee the existence of a relative equilibrium in which the axis  z of the gyro- 
compass  horizon is directed to the Ea r th ' s  center .  
relative equilibrium, the y axis, according to (3.71), i s  perpendicular to 
the direction of the absolute velocity of the object. between 
the horizontal projection of the absolute velocity of the object and t h e  
direction to the east  ( i .e . ,  the angle between the axis  y and the direction to 
the north) is given by 

In the position of 

The angle Y 

I:" t" -= V h  ( 3  .Y3) 
rii cos ip + I.' ' 

where cp i s  the geocentric latitude of the object, V, and V ,  a r e  the eastward 
and the northward components of i t s  horizontal velocity relative to the Ea r th .  
They a r e  expressed in t e r m s  of the derivatives of the latitude #f and the 
longitude h by the equalities: 

(3.94) 
rh 

cos 'p 
I ' , ~  = rri, _-= __ . 

Note that we a r e  operating in the geocentric system of coordinates, so 
that the plane of the horizon is the plane perpendicular to the direction to 
the Ea r th ' s  cen te r .  

e r r o r  of a gyrocompass.'' If the horizontal component of the velocity of an 
object relative to the Ea r th  is known, 

Eq. (3.93) coincides with the standard equation for  the so-called velocity 

v = \[vi. +vi. (3 .95)  

y* can be found f r o m  the equality 

(3.96) 

where x i s  the so-called gyrocompass course,  i.e., the angle between the 
axis  )I and the direction of the velocity vector.  The relative velocity V of 
a s e a  vessel ,  say, is measured with a log; for  a i r c ra f t  moving near  the 
Earth 's  surface a Doppler velocity me te r  is used. 

Note that if  V is known, the gyrocompass horizon can determine the 
geocentric coordinates cp and A .  Indeed, f rom (3.96) we have 

y' - v c o s  x 
ru cos 'p ' 

4B2sin'c = m a ' r 2 [ ( u + A ) ' c o s Z ~ + _ t * ] ,  (3.97) 

which together with the equality 

V ?  = ( X 2  coszcp +$) r? (3.98) 

gives a s e t  of two differential equations for  j. and 6. 
system for known initial conditions in fact gives A and cp. 
metic and integrating circui ts  can be used to build a sys t em simulating 
Eqs. (3.97), (3.98), which given the values of E and V will continuously 
compute the coordinates cp and A .  

The solution of this 
Various ar i th-  

* B u 1 g a k o v ,  R.V. Prikladnaya teoriya giroskopov (Applied Theory of Gyrosco~es). - Gostekhizdat. 1955. 
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I f  I' is not known, the gyrocon1pas.j horizon alone is insufficient for 
cit-,termining the coordinates .  Indeed, although the x.v: axes  In a position of 
rlclntive equilibriuni a r e  the co-moving axes  on a sphere  concentric with the 
Earth,  \ v e  have onQ- t x o  projections of the absolute angular velocity of  these 
<h+3: 

I (  i . i  determined by the conditions of relative equilibrium. This  is a 
cnnsequence of the geon1.ttric linkage bttu.een the gvroscopes in the gyro-  
eornpass horizon and th'? ttvo-gyro -:ert ical ' gearcd o r  gimbaled).  

t h i s  linkage, the tU'o gyroscop-s are equ;valent t c ,  ci single gyroscope :vith 
,..L.!riable angular momeritun; s long  the ',' a x i s .  \-e! f<w-t+-.:+.t'mine ttir directiun 
t$.) the E a r t h ' s  center  in space,  as '.ye ha:-? seen in the preceding, we require  
. + t  I,-~::st t w o  reference dtrectinns,  1.e..  ti.\ 'o geometricall:.- independent (not 
l i nkvd t  angular momenta 

-ip~cifying rile veIoci t .  I' i s  in fact equiv?.Ient t u  specifying 'E.. It enables 
u s  tr) find y '  arid hence to determinf? the urient.ation of the ."y: axes  relat ice  
t c ,  the axes  rigidly fixed to the E a r t h  The Ear th ' s  motion (rots t ion)  relative 
~ 6 %  rhi, fixed-nttitude axes i, 1 1  :, is kno\.r n.  G i v e n  I': x e  therefore  complete- 
ly specify the mutual artitude of the axes  ,>.>: and : ti:,. Hence the ccjnclusion 
t i i s t  knot$-ledge of I' is essentially equivalent to knowledge of 6 8 ,  . 

.A11 the previous rcstults conrernitig course  e r r o r  and Eqs.  (3 .97) ,  
c S i i . Y 3 \  for ihe gyroconipc.aa horizon a r e  c lear ly  applicable to the two-gyro 
:*ert ical, s ince thG-, s tar t ing equations of motion a r e  identical. 

Sote ,  however, that despite t h e  complete identity of the equations 
describing the operation of the two sys tems,  there  i s  a cer ta in  fundamental 
ci i f fc r (I' nc e be t x  ee t i  the tn . 
manufacture of the sensi t ive element may lead to ent i re ly  different effects 
in t h e  two s y s t e m s .  
introduces a torque \ I1 in the equations of oscil lation about the position of 
r,.,lative equilibrium of t.ie two-gyro ver t icai  13.86), whereas  for the gyro-  
conipass horizon the s a m e  defect gives  r i s e  to the torque l . l l . r .  
the twc-gyro ver t ical  ha.; a lower direction measuring accuracy  and the 
gyrocompass horizontal  a lower ver t ical  fixing accuracy  in sys t ems  with 
identical technical parameters .  

determine the angles  1 1 .  1.. y that the per turbed axes  s y z  of the sensi t ive 
gyro element fixed to the platform make 1.vith the position of relative 
equilibrium of the axes :r.y.:.. 
gyroscope angle f rom the relative equilibrium value 

ckf  the c o u r s e  e r r o r  
Litigle y .  y '  is obtained f rom Eqs.  (3.93), (3,961, (3.97). In  this c a s e  addi- 
tional information on  the velocity I. is used  and the geographical coordinates  
o f  the object are determined while calculating \ . 
Y:, 'ive should thus wri te  E q s .  (3.931, (3.96), (3 .97)  in  variational form.  

Note that the gyrocompass horizon used in ships  somet imes  sa t i s f i e s  
only condition (3.74), and not (3.76); r i s  considered constant, e.g., equal 
to the mean radius  of the Ear th .  

Because 

Identic a 1 techno logic a 1 i m n e  r fec t ions in  the 

T h u s ,  gyroscope imbalance along the c a s e  ax les  

.Is a resul t ,  

(-'(insider another point in connection with Eqs .  13.86). These  equations 

Eqs.  (3.86) a l s o  give the deviation 6c of the 
f ,  . 

N o t e  that i f  the navigation accuracy i s  sufficient to justify determination 
, the inaccuracy of this quantity should be added to the 

To find the inaccuracy in 

The torques .\I:. .\I: compensating the effect 



of the nonspherical component of the Ea r th ’ s  gravitation a r e  disregarded.” 
The e r r o r s  Ar and A; introduced in Eqs.  ( 3 . 8 6 )  in fact allow for  deviations 

I .bl:, M;will be discussed in the next chapter in connection with the simplified 
equations of inertial  sys t ems  and various methods of introducing the non- 
spherical  component of the Earth’s  gravitation. 

S 3 . 3 .  A G E N E R A I ,  SCHULER-TUNED SYSTEM 

I 3.3.1. Conditions of existence of relative equilibrium 

Consider a general  mechanica1 system mounted on a moving object in 
some  suspension with three degrees of freedom, so  that the center  of m a s s  

The 
distance between the suspension point and the center  of m a s s  of the 
system is u. The system may comprise  various moving mechanical devices, 
including gyroscopes.  

suspension point, and the axis z is directed along the line between the 
center of mass and the suspension point, toward the center of mass .  
coordinates of the center of mass  a r e  thus 

o f  the system does not coincide with the center  0 of the suspension. 

The origin of the axes O x y  associated with the system is placed a t  the 

The 

xc = y‘ - 0. 2, = - a.  ( 3.1 00)  

We w i l l  now find the conditions when the z axis  of the system in relative 

Applying the theorem of the angular momentum to the motion of the 
equilibrium points to  the Earth’s  center .  

system a s  a whole about i ts  center  of mass ,  w e  have 

where K is the angular momentum of the system, and M i s  the resultant 
external torque. 

forces  to reduce to a single force 
A s  before in calculating the resultant torque we assume the gravitational 

F = nt grad V .  (3.1 02) 

applied to the center of m a s s  in the direction of the Earth’s  gravitational 
acceleration a t  the point 0. The inhomogeneity of the gravitational field 
within the volume of the system is ignored. 

Addim? the t ranslatorv inertia fo rces  and an art if icial  toraue M*. we 

Here,  a s  before, r is the radius-vector of the point 0 ,  originating at  the 
Earth’s  center O,, a i s  the radius vector of the point c originating at  the point 0. 

* B u 1 g a k  o v ,  B.V. 
G r a m  me 1, R. 

Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes). - Gostekhizdat. 1935. 
Der Kreisel, V o l .  2. - Sprlnger-Verlag. 1350. 

I26 



Let .v,J,:,, designate ti:e axes  xy; in a position of relative equilibrium. 
T h c n  

( 3 . 1 0 4 )  

Since in relative equilibrium a and r a r e  coll inear,  we have f rom (3.1031: 
f 3,104) 

Using (3.106), we wri te  (3.105) in the form 

i . e t  now 

d = k r .  13 loti! 

i.e., the distance f rom the center  of m a s s  to the suspenj ion point i s  propor-  
tional to the distance f rom the E a r t h ' s  cen ter .  To satisfy this condition, the 
sys tem naturally requi res  external  information on the distance r 

If condition (3.108) is satisfied,  w e  have in relative equilibrium 

u = - fir, (3.109) 

Lind thus 

(3.110) * 'u . dr 
dr 

- ,it i -- = I!, 

30 that Eq.  (3 .107) ,  using 13.109i, can  be writ ten in the form 

Integration of this equation gives 

where h i s  a constant vector.  

Taking h = 0,  we wri te  v==: and project Eq.  (3.112) on the axes  x,,, J',,, z,,. 
This  gives 

K ,  + m n r ? .  = 0 .  IC,. - muzt,, = O ,  h', = O ,  (3.113) 

Eqs.  13.106),  (3.108), :3.113) are the n e c e s s a r y  and sufficient conditions 
of existence of a relative equilibrium of a general  Schuler-tuned system 
whose axis  i s  directed tc the Ear th ' s  center ."  

*':,"iit!+n. ~l(:-!?), c i . l L ! )  viere & r i v d  h:; dn sltcinatlve t r c h ~ i q u e  ( i n  d p p l l C d t l m  to a gyroframe) by 
D.21 K I L tn 0 7 1  i n  tiis paptr "On the unperturbabtltt); of a gyroscoptc fraine. " - Prtkladfiaya Lfarrrnatika I 
:.lekhanika, ';<>I, " P ,  Xi>.'). 19ti-L. 
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The above conditions should be supplemented by suitable initial conditions 
of the sys tem.  Initially the axis z should coincide with the axis z,,. The 
initial r a t e  of turning of the axis  z should be equal to the r a t e  of turning of 
the axis  zo of the co-moving system (owing to the motion of the object). 

Conditions (3.106), (3.108) coincide with the analogous conditions for  the 
Schuler pendulum, two-gyro vertical, and gyrocompass horizon. The 
remaining conditions for these cases  a r e  readi ly  derived from Eqs. (3.1 13). 
Thus, for  a physical pendulum 

K.ro = Am, , Kso = KZ = CO,. 

The projections of the absolute velocity of the suspension point a r e  re la ted 
to the projections of the absolute angular velocity: 

X"' 
v = r o  v = - r o  

x <  YO. Yo 

Now from Eqs .  ( 3 . 1 1 3 )  we have the previous conditions 

A = mar.  co,. = 0 

For the gyrocompass horizon and the two-gyro vertical ,  the axis  x is 
directed along the vector w ,  so that a, = 0 .  
thus identically satisfied if H, = 0 .  

The f i r s t  condition in (3.113) is 
The two remaining conditions give 

where flfo and Jz, a r e  the moments of inertia of the gyropendulum sys tem 
about the corresponding axes.  

w e  have 
Hence, within the framework of the precession theory, when Jy.= J,. = 0, 

Hzu  = 0, H,, = mamy,.  

which coincides with the preceding conditions. 

3.3.2. Per turbed motion about the relat ive equilibrium 

Let us consider the motion of the axis  z of a general  Schuler-tuned 
sys tem satisfying conditions (3.106), (3.108), (3.113) about the relat ive 
equilibrium in cases  when the above conditions and the initial set t ing a r e  
observed only to some approximation. Other sys tem e r r o r s  w i l l  include 
the e r r o r  Ar in the external  information on the distance r f rom the Ear th ' s  
center ,  which is used in condition (3.108) 

r e  la t ive equilibrium. 

equations of motion. 
of reIative equilibrium, we find 

F i r s t  let us  consider smal l  oscillations of the z axis  about the s ta te  of 

We will again use  the theorem of the angular momentum to der ive the 
Taking the variations in Eq. (3.101) near  the position 

55 = aM, (3.114) 
dt 
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We can now determine separately the variations 6K and LM. The angular 
momentum K should be formed using ( 3  .I 07). Thus, 

(3  .I 15) 

where AK is an instrumf?ntal e r r o r ,  

To find b M ,  note that the variation of the torque is determined by the 
\-ariation ba ,  the variation 6.W'of the correct ing torque, and the torque Ln 
associated with instrumental  e r r o r s .  Therefore ,  using the expression for  
.H in the right-hand s ide of Eq. (3.103), w e  find 

bjn = ha F - d-r I + ijw A x  (3.117) 
'it- 

In Eq.(3.117) nu i s  given by 

ha = - k Ar - LIZ,~. 

The f i r s t  t e rm in the right-hand s ide  i s  associated with e r r o r s  in the 
information on the distance r and deviations of the ax is  z f rom the exact 
geocentric vertical; the second t e rm is associated with the instrumenta1 
e r r o r  
center  of mass .  

(3.118) 

in measuring the distance a between the suspension point and the 

Differentiating (3.115) and noting that 

km - ~ - + k m - - X - = O ,  d 6 r  d r  d r  d d r  
dt  dt dt dt 

(3.119) 

w e  find 

*= ~m br x dl- d- r  i- k m r  x r+ d2 Sr 7. d 1.K (3.120) 
'it 

It now remains to inser t  (3.120) and (3.117) in Eq. (3.114). However, let  
us f i r s t  somewhat simplif*y the expression for  the torque variation (3.117). 
The variation OM' of the correct ing torque M' which compensates the 
horizontal component of the gravitational field i s  smal l  and can be dropped, 
Now, using the f i r s t  equation in (3.104). we get 

ba X F = IJu X ( F ~ , x "  f F y ~ o  + F.z,zJ. (3.121) 

Dropping the product of ha by the sum of the f i r s t  and second t e r m s  in 
parentheses ( a  second-order contribution) and seeing that to the s a m e  
approximation 

F,,=--'m. (3.122) 
r: 

(3.1 23) 
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Inserting ba f rom (3.118), we thus get 

6M = kmbr X ( f z o + s )  + m Aazo X $4- AM (3.124) 
I 

We can now inser t  (3.124), (3.120) in Eq. (3.114). Collecting and s impli-  
fying we obtain, using the f i r s t  equality in (3.116)*, 

k m r X  (T+T)=-- d dt AK f A M + + ~ a z ~ X g .  (3.125) 

This  is the vector equation of sma l l  oscillations about a re la t ive equili- 

d' &r p br 

brium of a general  Schuler-tuned system, which sa t i s f ies  (with some 
instrumental  e r r o r s )  the conditions (3.106), (3.1 08) ,  (3.313). 

the expressions for r and 6 t  f rom (3.116) and project the resulting equation 
onto the axes xo, yo* using the equalities 

To obtain the sca l a r  equations for  6x and b y ,  w e  should inser t  in (3.125) 

I - dza . -a d2+o 

d20 
dt Yo = - a x , ,  

0 - Y"' 7 -% =my, +*X,(%. 

-.  . Yo = - ix, + a y , ~ * , .  df2 

where ax,,. my.. wz0 a r e  the projections of the absolute angular velocity of the 
xoy,z, axes on the corresponding directions. 

After obvious simplifications, we thus obtain 

6: + (f - w;, - a;$) bx + pX~~,,, - 
- 20,,, 6y = - (aAuazq + wyJ Ar - 2wy, A; + 
t- m u  (--A Ry, - azo AKx, + ax. AKZJ + + + 

ay - 

A M  

+ + [ r  (Ah + ~ X " W Z , )  + 2;a,,l8 

6Y + ($ - *io - a:o J by  + (aX,a,,, + iz) 6~ + 
+ 2aZu 6.i = - (ay,ar, - hx0) Ar + 2oX0 A; + 

I ~ ~ ~ x o  - + - ma (&*so + ayQ AKzo - 01, M y , )  - 
Aa . -- a Ir (Ox ,  - a,,Oz,) + 2;0,,1. 

These equations descr ibe sma l l  oscillations of a Schuler-tuned sys tem 

Let u s  now derive the equations of perturbed motion for  finite deviations 
about a position of re la t ive equilibrium. 

of the ax is  z f rom relat ive equilibrium. We may clear ly  take 

Aa = 0, AKx, = AKy, = AU,, = 0, AMxe = A M ,  = 0,  ( 3.1 28) 

since the right-hand s ides  of Eqs.  (3.127) corresponding to the instrumental  
e r r o r s  enumerated in (3.128) re ta in  the i r  form for finite deviations a s  well.  

Going over the derivation of Eqs.  (3.127), we s e e  that the homogeneous 
equation (3.125) is an  exact equation for the perturbation Or, if we ignore the 
variation of the nonspherical  gravitational component ( a s  was done in the 

* A n d  r e  e v ,  V.D. Theory of Schuler-tuned systems. - Prikladnaya Matematika I Mekhanika, Vol. 29, 
No.6.  1965. 
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derivation of this equation). Eqs. (3.127), on the other hand, are f i r s t -  
approximation equaticns. 
t h e  vector equation (3.125) onto the axes  x,,. M, we used for ~\r  its expression 
from (3.116) 

This  i s  so  because in taking the projections of 

15r = ~ Z X ?  - byy,) + .Ar+ (3.129) 

In I t  is  readily seen  that (3.129) is valid only to f i r s t  approximation. 
exact equations, (3.129) should be replaced by 

(3.130) 

For sma l l  A x .  Oy. hz,, when their  squa res  a r e  ignorable together with the 
square of l r ,  the second equality in (3.130) gives 

&: = .\r . (3.131) 

and the f i r s t  equality i n  (3.130) thus reduces to (3.129). 

and using (3.126), 13.138), we take h r  f rom (3.130) and obtain a nonlinear 
system of s c a l a r  equations: 

Taking the projections of the vector equation (3.125) onto the axes x,), J',, 

I 
, (3.132) 

For sma l l  6 x ,  by. b z ,  when Eq. (3.131) i s  valid, the nonlinear equations 
(3.132) reduce to  the fii-st-approximation l inear equations (3.127). 

S3.4. ANALOGY BETVJEEN SCHULER-TUNED SYSTEMS 
AND TWO-ACCELEROMETER INERTIAL SYSTEMS 

3.4.1. 
w i t h  the equations of oscillations of a gyropendulum 
system about relative equilibrium 

Comparison of the f i r s t  group of e r r o r  equations 

The first group of e r r o r  equations of an inertial  sys t em with two accele- 
rome te r s  oriented in the horizontal plane compr i se s  Eqs. (2.31); the 
corresponding first-approximation equations are (2.28). 

We will now compare these equations with Eqs.  (3.132), (3.127) of the 
perturbed motion of a general  Schuler-tuned gyropendulum sys t em about the 
position of relative equilibrium with the 2 axis  caged to the geocentric 
vertical .  The purpose o f  this comparison is to establish a dynamic analogy 
between Schuler-tuned sys t ems  and two-accelerometer iner t ia l  systems.  

We s t a r t  with the first-approximation equations (2.28), (3.127). The  left- 
hand s ides  of (2.28) and (3.127) are identical in form and in content. Indeed, 
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in both (2.28) and (3.127) 6 x ,  by a r e  the projections of br on the axes 
x ,  y (x0, yo) of the co-moving sys tem xyz(x,y,,zo), with the axis  z(z,,) pointing 
along r .  w X .  coy, (w,,, oy,. oZ,) a r e  the projections of the absolute anguIar 
velocity of these axes on the corresponding directions. 

The f i r s t  group of homogeneous e r r o r  equations of an inertial  sys tem a r e  
thus identical in the f i r s t  approximation to the equations of f r ee  oscillations 
of a Schuler-tuned sys tem about re la t ive equilibrium. It therefore  appears  
that the two mechanical sys tems a r e  dynamically similar in the absence of 
instrumental  e r r o r s .  

Let us  now compare the right-hand s ides  of Eqs .  (2.28) and (3.127) The 
right-hand s ides  contain two groups of terms:  the f i r s t  with the e r r o r  
S r  (= Ah) in the external  information concerning the distance f rom the Ear th ' s  
center  ( the altitude), and the second with instrumental  e r r o r s  of the sys tem 
elements .  The t e r m s  containing Ar (and A;)  in Eqs.  (2.28) and (3.127) 
coincide. The other  t e r m s  a r e  different, however. This  is quite natural  
s ince the t e r m s  with Ar and Ar' a r e  of common origin in both sys tems.  The 
origin of the other te rms ,  on the other hand, is different in the two sys t ems ,  
Note that the form of the right-hand s ides  of Eqs.  (2.28) and Eqs.  (3.127) is 
largely a rb i t ra ry .  It depends on the par t icular  instrumental  e r r o r s  which 
a r e  taken into consideration in the derivation of the corresponding equations. 

Eqs.  (2.31). (2.132) for finite deviations, we conclude that these equations 
also coincide. 
sys tems a r e  thus dynamically s imi la r  in the large, a s  well a s  in the smal l .  

equations of perturbed motion of a general  Schuler-tuned sys tems.  In S3.1 
we derived Eqs.  (3.53), (3.63) for  the perturbed motion of the Schuler 
pendulum and Eqs .  (3.86) of the perturbed motion of a two-gyro ver t ical  and 
a Geckeler-Anschutz gyrocompass horizon. Since these devices a r e  c lear ly  
par t icular  ca ses  of a general  Schuler-tuned system, Eqs.  (3.53), (3.63), 
and (3.86) should a l so  reduce to Eqs.  (2.28), (3.127) o r  (2.31), (2.132). Let 
us prove this proposition. 

the homogeneous equations (2.28). (3.127). 

We have compared the first-approximation equations. Turning to 

Two-accelerometer inertial  sys tems and Schuler-tuned 

W e  have so  f a r  compared the e r r o r  equations (2.28), (2.31) with the 

At a f i r s t  glance, the left-hand s ides  of Eqs.  (3.53) a r e  not identicaI to 
However, substituting 

6 x = - r p ,  6 y = r a  (3.133) 

in (3.53), we get 
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The geometr ical  meaning of the substitution of var iables  (3.133) i s  
obvious. 
left-hand s ides  of Eqs .  (2.28), (3.127). 
in  the right-hand s ides  of a l l  the three  sys t ems .  
in  the right-hand s ides  of Eqs.  (3.134) and (3.127) a l so  exactly coincide ( th i s  
can be shown using the equality A=mar ) .  
K. = .hyI A', =Cw,, , we can easi ly  compare  the remaining terms in the 
right-hand s ides  of Eqs.  (3.134) and (3.127). 

Let us  now considel- the equations of sma l l  oscillations of a two-gyro 
ver t ical  (or  a Gecke1ei.-Anschutz gyrocompass horizon), Eqs.  (3.86). A t  a 
f i r s t  glance, Eqs.  (3.813) and Eqs.  (3.127), (2.28) have nothing in common. 
-4 m o r e  detailed analysis ,  however, disproves this f i r s t  impression.  

The left-hand s ides  of Eqs .  (3.134) completely coincide with the 
The t e r m s  with \r and 1; coincide 

The t e r m s  with h i  and .\; 

Remembering that K t , = . - l u , ,  

According to the las t  two equations in (3.86) 

(3.135) 

Inserting Eqs. (3.133) in the f i r s t  two equations in (3.86), w e  obtain two 
coupled second-order  different ia l  equations for  (L and p. 
tution (3.133) in these equations, w e  obtain a f te r  s imple  manipulations 

Making the subst i -  

(3  .I 36) 

Comparing the homo,zeneous equations (3.136) and (3.127), (2.28), w e  note 
that they coincide if  w e  take w r , = ~ d t =  0 in (3.127), (2.28). This  i s  equivalent 
to projecting these  equations on the axes  x,,)tz,, ( x y z t ,  with the ax is  x,,(x) lying 
in the plane through the absolute velocity vector  of the point 0 and the 
Ear th ' s  cen ter  0,. 
Eqs. (3.136). 
homogeneous equations 173.127), (2.28). 
equations are a l so  readi ly  compared.  

approximation equations. 
which descr ibe  free per turbed motion with finite deviations. 
es tabl ish the equivalence of these equations with the homogeneous equations 
(2.31),(3.132), i.e.,  

Now this is precisely the definition of the axes  xuy0z, in 
The homcgeneous sys t em (3.136) is therefore  equivalent to  

The right-hand s ides  of these 

Eqs.  (3.53), (3.86), (2.28), (3.127) discussed in the preceding a r e  f i r s t -  

W e  will now 
F o r  the Schuler-pendulum we a l so  have Eqs .  (3.63) 

ax + (+ - 0; - 0:) ax + ( O p y  - "3 by - 

- 2% b;, +(oxo, + h i )  6z + 20, a; = 0, 

+ 29, a i  + (up, - &J az - 20, b i  = 0, 

b i t  ( 5 - u ;  - a:] 6y + (oyox + 0 , )bx  + ' (3.137) 

 EM)^ +(bpi? + (6rP + 2r bz = 0. 
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In (3.137) we make the substitution 

bz = r ( c o s  a cosp - 1). 

The geometr ical  meaning of this substitution is again obvious. 

cally satisfied.  
substitution of ox. oy, a, f rom (3.56) immediately gives Eqs.  (3.63). 

the perturbed motion of a two-gyro ver t ical  and the Geckeler-Anschutz 
gyrocompass horizon with Eqs.  (3.137) fo r  finite, a s  well a s  small, devia- 
tions. To obtain the equations of motion of the gyrovert ical  and the gyro- 
compass  in case  of finite deviations of the axes  x y r  f rom the axes x,y,r,,  w e  
should inser t  in (3.68) the expressions for  a,, oy. a, which follow from the 
mat r ix  of direct ioncosines  (3.33) (and not expressions (3.35), a s  in the derivation 
of Eqs. (3.86)). After that we eliminate y and 2Bsine; the last  expression is not 
varied, a s  in the transformation f rom (3.83) to (3.86). but droppedaltogether.  
Then we make the substitution (3.138), which gives Eqs.  (3.137). 

equations for  the perturbations 6 x ,  6y assuming a spherical  gravitation field. 
In the derivation of the e r r o r  equations (2.31) of a two-accelerometer system 
we ignored the variations of the nonspherical gravitation component. In the 
derivation of the equations of perturbed motion of a Schuler-tuned system, 
Eqs.  (3.132), we omitted the variations of the torques compensating the 
effect of the nonspherical  gravitation component. The t e r m s  neglected in 
the derivation a r e  thus essentially the same in Eqs.  (2.31) and Eqs.  (3.132). 
It can be shown that by retaining the variations of the nonspherical  compo- 
nent we introduce identical additional t e r m s  in these equations. 
between gyropendulum sys tems and two-accelerometer inertial  sys tems is 
thus preserved  in the nonspherical  field also.  

The situation is somewhat different with regard  to the homogeneity of the 
gravitational field within the volume occupied by the system. 

In the derivations of the equations of re la t ive equilibrium for  the Schuler 
pendulum and the equations of i t s  oscillations about a re la t ive equilibrium, 
we actually assumed that the effect of the Ear th ' s  gravitation on the pendulum 
can be reduced to a single resultant force applied to the center  of m a s s  of 
the pendulum. This assumption is c lear ly  equivalent to the assumption of a 
homogeneous gravitation field within the volume occupied by the pendulum. 
In fact, however, the gravitational forces  a lso produce a cer ta in  resultant 
torque about the center  of mass .*  

is distributed asymmetr ical ly  about the direction f rom the center  of m a s s  to 
the field center .  
geometr ical  s ize  of the body. 
pendulum in the form of a rigid body the torques due to field inhomogeneity 
may prove to  be comparable with the restor ing torque of the resul tantforce.  

I 
Inserting (3.138) in the third equation in (3.137) we see  that i t  i s  identi- 

Insertion of (3.138) in the f i r s t  two equations in (3.137) and 

Note that we can fur ther  es tabl ish a complete analogy in the equations of 

W e  have compared Eqs.  (2.31) and (3.63), (3.132). These a r e  exact 

The anaIogy 

In a spherical  field the resul tant  gravity torque appears  only if the m a s s  

The magnitude of this torque additionally depends on the 
Calculations show** that for  a Schuler 

ment of the motion of an artificial Earth satellite about its center of mass. See,  e .g . ,  Belet  s k i  i ,  V.V.  
The motion of artificial Earth satellites about the center of man. - In: "Iskusavennye sputniki Zemli," 
No.1. AN SSSR. 1958. 

Mathematik und Physik. Vol .  24, No. 5/6. 1944. 
** H o  c h  H. Das physikalische Pendel im radialsymmetrischen Erdgewichtskraftfeld. - Zeitschrift fur  ang. 
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Introduction of the field inhomogeneity torques in the theory of the Schuler 
pendulum leads to a definite analogy with s o m e  gravity attitude stabilizing 
s y s t e m s  (not containing gyroscopes) .* This  analogy, however, i s  not a s  
immediate and meaningful as the analogy with two-accelerometer iner t ia l  
sys t ems .  We will not go into this problem in any more  detail.  

Note that E q s .  ( 2 . 2 8 ) ,  ( 2 . 3 1 )  constitute only the first group of e r r o r  
equations of an iner t ia l  sys t em.  
equations which cha.racterize the gyro e r r o r s  of the sys t em.  

is insufficient fo r  measuring the coordinates of the object. 
only fixes the direction of the geocentric ver t ical .  
we should introduce additional gyroscopes,  say, which give the fised- 
orientation axes t.~:.. The  angles between the z axis  of the pendulum and 
t h e  axes  :,I)-;. of the gyroscopes then determine (together with r )  the coordi-  
nates  of the moving object. 
attitude e r r o r s  of t ie  gyroscopes associated with the axes  :,~1,5,, i.e., the 
second group of e r r o r  equations of the inertial  sys t em.  
pendulum sys t em without gyroscopes (e.g., the Schuler pendulum a s  such) 
does not fix any reference direction in the horizontal  plane. A gyropendulum 
system (a  gyrocompass,  say) ,  on the other  hand, gives a natural  reference 
direction. In this case,  the e r r o r  in the determination of the north i s  
associated with bot? gyro and ver t ical  e r r o r s ,  a s  in an iner t ia l  sys t em with 
t ivo  hor  i z on t a 1 ac c e le r om e t e r s . 

The above analysis  es tabl ishes  a complete dynamic analogy between a 
Schuler-tuned gyropendulum navigation sys t em and a two-accelerometer 
inertial  navigation system. Fundamentally, the two sys t ems  are equivalent. 
Although the Schuler-tuned sys t em u s e s  no acce le romete r s  a s  such, the 
pendulum caged to the geocentric ver t ical  essentially consti tutes a two- 
degrees-of-freedom acce le romete r  which m e a s u r e s  the horizontal accele- 
rat ions.  These accelerat ions a r e  direct ly  integrated by the pendulum sys t em 
in the cour se  of i t s  motion. 

T h e r e  i s  a l so  the second group of e r r o r  

In § l  of this chapter  w e  have noted that a single Schuler-tuned systeni 
This  sys t em 

To find the coordinates,  

The total position e r r o r s  thus include the 

Moreover,  a 

3 . 1 . 2 .  
acce le romete r  iner t ia l  sys t ems  

Sufficient sl.ability conditions for  two- 

The analogy drawn in 3 .4 .1  is highly important in the theory of iner t ia l  
It link:; up two ent i re ly  different t rends in the development of navigation. 

the theory and pe rmi t s  free interchange of r e su l t s  in both directions.  
A l l  the r e su l t s  of Chapter 2 obtained in the analysis  of stabil i ty of 

Eqs.  ( 2 . 2 8 )  can thu,; be extended to Schuler-tuned sys t ems .  
hand, var ious r e su l t s  in the theory of gyrocompass horizons and two-gyro 
ver t icals  obtained by Bulgakov, Ishlinskii, Merkin, and Koshlyakov"" 
become much m o r e  meaningful. For example, Ishlinskii t used a special  
complex-valued suDstitution to integrate  Eq. (3 .86 )  for  the case p,'rJ>>w;. 0:; 

r = const. Turning to Eqs.  (2.28) we note immediately that for  r = const, 
o,=oy =0,  substitution cf var iables  (2 .32)  with 

On the other 

1 

6= J o,,dt ( 3 . 1 3 9 )  
0 

See 53.4 of my "Theory Jf Inertial Navigation: Autonomous Systems." 1966. 

t See footnoce on p- 117. 
*. See references at the enc of the book.  
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Therefore ,  a sufficient condition of Lyapunov stabil i ty of Eqs.  (3.140) is 

The  series-expansion of R" in powers of h, b, a, 6 s t a r t s  with the quadratic 
that U' be a n  alternzting-sign function. 

terms:  . .  
W' ==a: +- p2 + d (q: - 1,): ) + fi?('(,>:-(+; -mi ) + . , , ( 3.145) 

-4pplying the Syl*rester test  to the quadratic fo rm in the right-hand 
s ide  of Eq. (3.145), w e  obtain the condition of positive definiteness in the 
form of the inequality 

<*)? ,, - i,,? :.. - 0); > 0.  (3.146) 

This  inequality is thus a sufficient condition of stabil i ty of the relat ive 
equilibrium of a Schuler-tuned sys t em and a t  the s a m e  t ime a sufficient 
condition of stabil i ty of a two-accelerometer sys t em fo r  motion along a 
parallel .  It coincides with condition (2.49), previously derived f rom f i r s t -  
approximation equations.' 

3.4.3. Damping of oscil lations in a Schuler-tuned sys t em 

\Vhen condition (3.116) is satisfied,  the perturbed motion of a Schuler- 
tuned sys t em is Lyamnov s table .  This  condition, however, does not e p s u r e  
asymptotic stability, and we w i l l  now consider  the asymptotic stabil i ty of 
the relative equilibrium of the Schuler pendulum. 

To ensu re  asympiotic stability, w e  introduce internal dissipation, i.e., 
t e r m s  of the fo rm IN;. h i  in the left-hand s ides  of E q s .  (3.53). 
these t e r m s  cannot tie formed without external  guidance information. We 
have neither the angles u, p nor the corresponding r a t e s  of change h. b ,  and 
i t  is therefore  impossible to fo rm (and apply to the pendulum) torques 
proportional to these quantities. In general ,  knowledge of a, p i s  not s t r i c t ly  
essent ia l  for  damping the pendulum oscil lations.  
and sign i. 
use  external  informztion, w e  can  only speak of damping torques proportional 
to the absolute rotatton velocity of the pendulum or, 0,. 19,. and not to the 
relat ive velocities 6 .  b .  
is introduced in the pendulum pivot. 

in the c a s e  when i t s  pivot moves with constant velocity along the arc of the 
g rea t  circle on a fixed-orientation sphe re  concentric with the Ea r th .  

However, 

It suffices to have s ign 4 
These  functions, however, a r e  not forthcoming ei ther .  If w e  

Torques of this kind appear,  e.g., if viscous friction 

Consider s m a l l  oscil lations of the pendulum about the relative equilibrium 

F o r  this motion w e  may  take 

11)~ = o: = 0. r = const. (3 .I 47) 
Taking A =mar  anti adding the viscous friction torques - k,w,. - kywy, - k,w, 

in the right-hand s ides ,  w e  obtain f rom Eqs.  (3.41) (the case of no instru-  
mental  e r r o r s )  

1 a +$ a+ k,; - k f i y  y f &(-@;,a + oy ,y )  = 0. 

I (3 .I 48) 

c-$ (- wy,a + .j, + k, (- oy,a + i.) = 0. 1 
[n application to gyrocompasses this condition was derived in  h l e r k i n ,  D.R. Stability of motion of a 
gyroframe. - Prikladnaya blatematika I hlekhanika. Vol .  25, N o .  6. 1361. 
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If 

the third 

c + 0.  

tion in  (3.148) is readilyintegrated. This  gives 

- o Y , ~  + G = (- (fi;naO + i o )  e x p  [ - 3 t )  , 

(3.149) 

( 3 . 1 50) 

and Eqs. (3.148) thus take the form 

(3.151) I Cmy0 
a + k x & + o : u - k  .r Ya y=-- mor (- *YP o + $ ' ) e x p ( - ~ ) .  

Y O '  
+ krh + (ai - (o;,'J j3 = - k y o  

j - o,,p = (- +yo) exp (+f). 

Here,  as before a,' stands for  ~ J r 3 .  

If, conversely, 

c = 0,  (3.1 52) 

we have f rom the third equation in (3.148) 

y - oy,,a = 0 .  (3.153) 

Eqs .  (3.148) then take the form 

(3.1 54) 

The second equation in  (3.151) coincides with the second equation in  
(3.154). Both are solved independently of the other equations. The equation 

P + (ai - a;,>) P + kyP = - k p y ,  (3.1 55) 

has  a par t icular  solution 

- p=-- R P y o  (3.156) 
w; - a; ' 

For 0 ~ - ~ 0 ~ ~ > 0 ,  the roots  of the character is t ic  equation (3.155) have 
negative real par ts ,  and the sys tem is thus asymptotically stable with 
respec t  to the angle 6 .  
is damped, and we are left only with a constant deviation F. 
(3.1 51), (3.1 54) coincide: 

With time the solution of the homogeneous equation 

The homogeneous sys tems comprising the f i r s t  and third equations in 

(3.157) I a + kxa + oia - k,lo,,#y = 0 ,  

y -oyp = 0.  

The character is t ic  equation of (3.157) is 

P3 + k,p2 + 4 p  -I- kxo:v = 0 .  ( 3.1 58) 

138 
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Applying the H u r w i t z  test to this equation we find that for o;-o;~> 0 
the roots of Eq.  (3.158) have negative r e a l  par ts ,  s o  that the sys t em i s  again 
asymptotically staole.  

third equations in I 3.151) have nonzero right-hand s ides .  
right-hand s ides  go to z e r o  with time, and therefore the solutions of 
E q s .  (3.154) and (3.151) gradually draw c lose r  approaching for t + ; ~  the 
common values 

The f i r s t  and third equations in (3.154) are homogeneous. The f i rs t  and 
However, these 

Damping of the Schuler pendulum thus gives rise to a velocity e r r o r  6.  

In what follows w e  sha l l  see that a s imi l a r  situation 
This  e r r o r  can  be eliminated only by using additional information on the 
velocity of the pivot. 
obtains when damping is introduced in the f i rs t  group of e r r o r  equations of 
an inertial  sys t em.  
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Chapter 4 

SIMPLIFIED OPERATION EQUATIONS OF IDEAL 
AND PERTURBED TWO-ACCELEROMETER 
INER TIAL  S Y S  TEiZIS 

84.1.  GENERAL CONSIDERATIONS 

The ideal operation equations of a two-accelerometer inertial  system 
derived in Chapter 3 a r e  a direct  outcome of the fundamental equation of 
inertial  navigation ( 1 . 3 ) .  
additional simplifying assumptions apart  f rom those employed in the der iva-  
tion of the fundamental equation. Note that the resu l t s  of the simplifications 
introduced in the derivation of Eq. ( 1 . 3 )  lie f a r  beyond the practicable 
accuracy l imits  of inertial  systems.':' 

the coordinate gr id  for  navigating the moving object and by the orientation of 
the sensitive axes of the gyroscopes and acce lerometers .  The right-hand 
s ides  of these equations a r e  functions of the accelerometer  and gyro readings, 
the coordinates of the object, and the r a t e  of their  change. They also include 
parameters  which charac te r ize  the figure of the Earth, i ts  motion and 
gravitational field. 

Under particular c i rcumstances,  i.e., for cer ta in  groups of moving 
objects and specified navigation accuracy, some t e r m s  in the right-hand 
s ides  of the ideal operation equations may prove to be small .  
naturally can be omitted from the navigation equations, resulting in  a 
substantial simplification. Moreover, if  the programmed trajector ies  of 
the object a r e  given, an appropriate choice of the coordinate gr id  and the 
accelerometer  attitude will suppress  cer ta in  t e r m s  or relations in the ideal 
equations. 

The number of individual t e rms  and relat ions i s  not the only factor  to be 
considered. 
considerable significance. If it is judiciously chosen, the implementation of 
the navigation system i s  often substantially simplified. 

Our problem i s  thus directly re la ted to the technical implementation of 
the inertial  navigation system; it will help to reduce the number of elements 
and devices used in the system, simplify their operation, and increase their  
reliability. 

especially with the availability of elements and technical devices. 
apparently precludes a comprehensive theoretical analysis .  
analyze the various typical ca ses  occurr ing in practice. 

In deriving these equations we did not make any 

The form of the ideal operation equations is determined by the choice of 

These t e rms  

The form of the remaining relat ions and t e r m s  i s  a l so  of 

Note that this problem i s  closely linked with inertial  system design and 
This  

We can only 

* See my "Theory of Inertial Navigation: Autonomous Systems." - Nauka. 1966. 

I40 



In the following we will confine our  t reatment  to sys tems which measure  
orthodromic or gecgraphical coordinates. 

An inertial  sys tem can be visualized a s  a gyroscopic f r ame  with i t s  
unperturbed z axis  pointing along the radius-vector  r f rom the Ear th ' s  
cen ter  to the suspension point (along the geocentric vertical)  or along the 
normal  to the level ellipsoid through the suspension point of the gyroframe 
(on the Ear th ' s  sur lace ,  this i s  the geographical ver t ica l ) .  The acce lero-  
meter  sensi t ive axes n,. ny a r e  assumed to coincide with the axes .K and y 
of the gyroframe.  
aided by external  information on the dis tance r f rom the Ea r th ' s  cen ter  or, 
m o r e  precisely, on the altitude h .  

In t h e  following sect ions we will f i r s t  consider  the various representat ions 
and simplifications of the ideal operation equations associated with par t icular  
orientations of the axes  x. y (and the acce lerometers  n,. n y )  in the plane of 
t h e  geocentric or the geographical horizon. A f t e r  that we will investigate 
the simplifications associated with the sma l l  eccentr ic i ty  of the Ear th  and 
the sma l l  deviation of its gravitational field f rom spherical .  Finally, we 
will analyze the simplifications resul t ing from various cons t ra in ts  on the 
allowed t ra jec tor ies  of the object. 
t e r i s t i c s  of the object a s  i t s  velocity, range, t ime of motion, altitude, 
proximity to  some orthodromy surface,  etc.  

We have a l ready  noted in the preceding that the feasibility of var ious 
simplifications is closely re la ted  to the accuracy s tandards  of the inertial  
sys tem.  Therefore ,  the analysis  of the simplified ideal operation equations 
should be supplemented by an analysis  of the e r r o r  equations. Remember 
that when the ideal 3peration equations a r e  changed (s implif ied) ,  the e r r o r  
equations may a l so  change (somet imes  becoming m o r e  complex).  

operation equations. 
fea tures  of motion. 
motion, slow motion, and Kepler ian motion. A number of other  possibilities 
will be discussed in the following. 

There  i s  no z axis  acce lerometer ,  but the sys tem i s  

These  constraints  include such charac-  

Note that e r r o r  equations can  be simplified independently of the ideal 
These  simplifications may s t em f rom the pecul iar  

We have a l ready  used this approach in the c a s e  of plane 

S4.2.  
MEASURING THE ORTHODROWIIC COORDINATES 

SIMPLIFICATIONS IN AN INERTIAL SYSTEM 

4.2.1. Exact ideal operation equations. 
E r r o r  equations 

If the acce le romete r s  of an inertial  sys tem lie in the plane of the geo- 
cent r ic  horizon pointing along the eo-moving or thodromic axes,  the ideal 
operation equations a r e  Eqs. (2.23), and the e r r o r  equations (projected onto 
the co-moving orthcidromic axes)  a r e  Eqs.  (2.28), (1.96), (1.97), (1.118). 

Eqs. (2.23), (2.26), (1.96), (1.97), (1.1 18) were  der ived a s  a par t icular  
ca se  f rom the genera l  equations of iner t ia l  navigation in curv i l inear  coordi-  
nates. 
the exact ideal  operation equations for  the par t icular  sys tem being considered.  
This  will elucidate the actual  meaning of the var ious equations and the or igin 
of the different t e r m s  and thus help us  in fur ther  analysis .  

Before tryir.g to simplify the relevant equations, w e  should der ive  
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To ensure a fairly comprehensive treatment, we wi l l  der ive ideal opera- 
tion equations for  a somewhat more  general  ca se  than Eqs.  (2.23), assuming 
an a rb i t r a ry  orientation of the acce lerometers  n, and ny in the plane of the 
geocentric horizon (the sensitive axes of these acce lerometers  remain 
perpendicular to one another). 

orthodromic axes and co-moving axes of a rb i t r a ry  azimuthal orientation on 
a sphere concentric with the Earth.  

a t  the center  of the Earth and fixed orientation. 
a r e  denoted a s  always by Ol:il:. 
spin axis  (coinciding with i ts  symmetry axis),  and the axis  ; l i es  in the 
plane of the Greenwich meridian.  If the axes O l ~ a i l e : ~  and u,:qi initially 
coincide ( th i s  assumption does not involve loss of generality), their  re la t ive 
orientation a t  any subsequent t ime i s  descr ibed by the matr ix  of direction 
cosines  (1.7). 

The orthodromic axes 0,;‘q’:’ which occupy some a rb i t r a ry  though fixed 
position relat ive to the Ear th  a r e  defined by the direction cosines p i , ,  (1.16), 
re la t ive to the axes 0,:qC. The elements of matr ix  (1.16) a r e  constant and 
can be expressed,* e.g., in t e r m s  of the geocentric ( o r  geographical) coor-  
dinates of any two given points on the Earth’s  surface,  lying in the plane 
0,~’q’  of the axes 0,g’q’y. 

The position of an a rb i t r a ry  point 0 in the axes 0,;’q‘t‘ i s  determined by 
i ts  orthodromic coordinates ( s e e  F igure  1.5): the distance r from the 
Ear th’s  center  o,, the angle z between the line 0,O and the plane ul;‘i1’, and 
the angle S between the axis  5‘ and the projection of the line 0 , O  on the 
plane 0,g’q’. 

Its origin is at the point 0, the axis  zJ i s  directed along O,O, the axis  y, i s  
normal to zx in the plane through the point 0 and the axis  Y, and the axis sI 
complements the axes y3 and z3 to a right orthogonal trihedron. The relative 
orientation of the axes g’q’c and x3y3z, i s  described by the following matr ix  
of direction cosines: 

We s t a r t  with the fundamental relations of the kinematics of co-moving 

Let a s  before the fundamental f rame of reference be O,:,q*;. with i ts  origin 
The axes fixed to the Ear th  

The axis  5 i s  directed along the Ear th’s  

We now introduce the co-moving orthodromic axes X~J’ . ,~ ,  ( s e e  Figure 1 .?I). 

SA >‘I 21 

5’ - s i n s  - s i n z c o s S  c o s z c o s S  

11’ COSS - s i i i  z sin S cos z sin .S 
i‘ 0 cos 2 sin z 

(4.1) 

Together with mat r ices  (1.16) and (1.7) this table defines the orientation 
of the axes x3y3z, in the 0,gq: and O,;+q*L* f rames .  

The position of the point u re lat ive to the axes OlEq6 fixed to the Earth is 
determined ( s e e  Figure 1.4) by the geocentric coordinates r .  ‘f. h .  These 
coordinates a r e  defined in the axes 0,Lq; in the same way a s  the coordinates 
r ,  Z ,  S a r e  defined in the axes Oli’q’L‘. Then writing x2y2z2 for the co-moving 
geocentric axes, we have the direction cosines  

x2 s 2  2 2  

5 - s i n k  -ssinpcosh coscpcosh 
q cos?” - s i n r l s i n h  coscpsinh 

5 0  cosrp sincp, 

which a r e  analogous to direction cosines (4.1). 

* See Appendix 11. 

(4.2) 
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Since the axes : and :: coincide, we have from (4.1), (4.2), and (1.16) 

( 4 . 3 )  t i...s~I < + < s i .  =fill < , , s = ~ o s S ~ p ! ~ ~ ( ~ s ~ s t n ~  +iJ,12>ittz, 

i l i c * l  % i n  i .  = p.,: cos z c o s S  +p2. cos z s i n s  +P2: s tn  z ,  
- ' t i e j  =b,t  c ( , s : c o s S t p : , ~ o s r s i n S  i P- ,s tnz :  

these a r e  the relat ions between the geocentric and the orthodromic 
c 00 t-dinat e 5 .  

The relat ive orientation of the axes  x2y::? and x.y:i, i s  described by matr ix  
(1.19), where the  angle 11 i s  defined by Eqs. (1 .20)  which can be obtained 
from the mat r ices  of direction cosines  (4.1), (1,2), (1.16). 

If the axes  E'. q', 5' and ;, q. 5 coincide, the orthodromic coordinates 
r .  S. : reduce to the geocentric coordinates r .  i . ,  (1. Indeed, in this ca se  in 
(1.16) iJ,tl=p...=@81,=1, and the other  elements a r e  zero .  F r o m  (1.3) we 
thus obtain 

cs.rs ivs i. = <:OF 2 cos s,  
i<,.$t . i r l > .  =cos,-.;inS, 

\ l i i ' L  =slil:. 

Noreover ,  by Eqs .  f1.20), 11 = 0 and the axes .r2y-zL and x y.z3 also coincide. 

Besides the geocentric and orthodromic co-moving axes .r2y(.z2 and s y -7, 

we introduce an a rb i t r a ry  co-moving sys tem Os,? :, on a sphere  concentric 
w i t h  the Earth.  The attitude of these axes (F igu re  4.1) re lat ive to the axes 
x.p,=, i s  specified by the following matr ix  of direct ion cosines: 

The two-accelerometer inertial  sys tem in this c a s e  (F igu re  4.2) constitutes 
a platform ( the  axes  Oxyz) connected to the object with a three-degrees-  
of-freedom gimbal (not shown in F igu re  4.2). Three  gyroscopes f,, r,, r I  

I ? ?  
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with angular momenta H I .  H 2 .  H,? a r e  mounted on the platform in two-degrees- 
of-freedom gimbals.  Torquers  on the gyro precession axes s e t  up the 
torques ,M\, M i ,  M:. 
spat ia l  gyroframe.  
with the angular velocities 

The platform with the gyroscopes is thus a controlled 
The control torques M i .  M ; ,  M: make the f r ame  precess  

(4.5) 

Two acce lerometers  n, and n y  with sensi t ive axes along x and y axes  a r e  
rigidly fixed to the gyroframe platform. 
coincide, the acce lerometer  readings can be used to form the control torques 
M:. .+I:,. IW:, so that i r respec t ive  of the par t icular  motion of the object we 
identic ally have 

If the axes x y z  and x,y,z, initially 

O.t 3 axo, ay ay,. wz zz oz,, (4 .6)  

and the axes permanently coincide. 

readings. 
Eq. (1.3), the acce lerometer  readings a r e  

Let us der ive expressions f o r  ox,. oy,, az,in t e r m s  of the acce lerometer  
According to the fundamental equation of inertial  navigation, 

KO Xu K o ' n = w - g  Y. Yo Yu' (4.7) n = w  -g 

where w . ~ ~ .  wy, a r e  the x, and yo projections of the absolute acceleration* of 
the point 0 where the acce lerometer  sensi t ive m a s s e s  a r e .  

equations 
Differentiation of the vector e-$ in the moving sys tem gives Euler ' s  

(4.8) 

where dot denotes differentiation with respec t  to time. 

by the coordinates x:. yc, 2:. 

Consider some point P whose position in the axes Oxoyoz, is determined 
In accordance with the vector equality 

o=; f o  X r ,  

the projections w:, v:, 0; of the absolute velocity of the point P a r e  given by 

H e r e  wXo, wy,, vz, a r e  the projections of the absolute velocity of the origin of 

Take the point P to be the Ear th ' s  center  0,. 
the 0 x , y , ~ , ,  axes (the point 0) entering Eqs.  (4.8). 

Then 

x,p=O. y,P=O. z ;=- r .  (4.10) 

* More precisely the acceleration in the OLE&, frame in  whmh Eq.(1.3) is written. 

144 



i 4 2 .  di5TEl . '  :~'MSCffUCiG C ~ R T H O D R c ~ ! . ' I ~ :  C c V R 1 ) l A ' i E c  

Since the point 0, i s  s ta t ionary re la t ive  to the axes  O\:,q-:, (and i t  i s  in  
this f r ame  of re ference  that the velocities and accelerat ions a r e  measured) ,  
we have 

YP = vf  = V P  = 0. (4.11) x1 . I: 

Inserting (4.10), (4.11) in (4.9), w e  find 

From (4.7), (4.8),  ,3nd (4.12), we have 

Conlinuing the cms t ruc t ion  of the ideal operation equations, w e  expres s  
the projections I I . ) . .  . (o:,  of the absolute angular velocity of the axes  s >&,:, in 
t e r m s  of the orthodromic coordinates :, S and the i r  der ivat ives  f ,<. From 
the definition of the axes .r:y,:,,, x?y3zlr  using the mat r ix  (4 .4) ,  we have 

I (4 .11 )  

where 
axes  -r2+z3 on the corresponding direct ions.  

t h e  Earth: however, they turn additionally because the coordinates  : and .C 
change with t ime.  Therefore ,  

w I a r e  the projections of the absolute angular  velocity of the 

The axes  x:y;zi rotate  together with the axes  ;'q':' which spin with 

(4.1 5) 

where u t , .  u t .  u2!  a r e  the projections of the Ear th ' s  spin vector  u on the 
corresponding axes .  Since the vector  u points along the ax i s  C, bve use  
mat r ices  (4 .1 ) *  (1.15) to find the direct ion cos ines  of the angles  between this 
axis  and the axes  .r!. yl. i? and wr i te  

(4.16) 

From the second and the third equality in (4.15) we a l so  have 

fib> = (OY, - u j  ) tg z + uz,. (4.17) 
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Eqs.  (4.14)-(4.17) enable us  to express  z and S in t e r m s  of ox,,. oy,: 

z = / (-- a,, cos e + ouo sin e + ux,) dt  + 2 0 ,  
U I 

(4.18) 

Turning to Eqs.  (4.13), (4.18), (4.16), we see that additional expressions 
for  gxo, gy, and r are  required. Using Eqs.  (4.4), (1.20) and mat r ix  (1.19) we 
get 

1 
~ , , = f i , . , , p [ ( - p ~ ~ s i n S t P , , c o s S ) c o s e  -+ 
+( - f lu  s inrcosS  -pp,,sinzsinS +pS cosz)sinel .  

g,,,=g,,,o,,[--(-pB,, s inS+pB,. .cusS)sirie  + 
+ ( - P I ,  s i n t  COSS - p, ,s inrs inS +pL,cosr)cusel .  

I (4.19) 

Here  the projection g,,, of the gravitational acceleration is a function of r 
and the geocentric latitude r p .  
The third equality in (4.3) r e l a t e s  rp to r and S. 

The distance r entering the expression for  s,,; and direct ly  the right-hand 
s ides  of (4.19) is determined f rom the aI t imeter  readings f i  and the geo- 
centr ic  latitude cp using Eqs .  (1.13), f rom which the geographical latitude C p ’  
obviously can be eliminated. 

equality in  (4.3) and the f i r s t  equality in (1.27), w e  obtain a closed sys tem of 
ideal  operation equations of a two-accelerometer iner t ia l  sys tem measuring 
the orthodromic coordinates: 

It is defined by the first relation in (1 .27 ) .  

Combining Eqs.  (4.13), (4.18), (4.16), (4.19). (1.13)> (4.5), (4.6), the third 

z = J (-ox, cos E + oyo s i n  E + ux,) d t  -+ zo, 

s = { 1 (ox” sin E + oy, cos E - uy,) dt + so. 

0 

cos I ,, 

(4.20) 
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!+or 
Let u s  now proceed with a direct  derivation of the e r r o r  equations. 

main instrumental  e r r o r s  (i.e., the e r r o r s  of the sensi t ive elements) include 
the acce le romete r  e r r o r s  An,  h, and the gyrodrif t  h, h", h:, which by 
(4 .5 )  a r e  expressed Ln the fo rm 

= 0 Eqs.  (4.20) a r e  c l ea r ly  seen  to reduce to Eqs. ( 2 . 2 3 ) .  
The  

( 3 . 2 1 )  

1-et the perturbed orientation of the axes 0.c.v: fixed to the gyroframe be 
determined by s m a l l  angles ( f .  I:, y re la t ive to the unperturbed axes: 

(4 .22 )  

The difference in the projections of the absolute angular velocity of Oxy-. 
on the perturbed and unperturbed axes  is then given by 

( 4 . 2 3 )  

Taking the variations of the sixth, seventh, and eighth equations in 
(4.201, w e  get 

(4 .24 )  I s.,, == w t  - 14, .  - A(&, = n +i*,i. y - f,) p - 
th, == (9, - <*)? - h,, = p - (4, y f 0.. u - A,!), , 

&*I: 5=,1)2 - (0) 2. - .h+ = .j + Q r  6 - (0: u - Aw.. . 

, 

w h e r e  by definition -\o, . h,;. Amz are the projections of the gyro drift  velocity 
onto the corresponding axes.  
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Taking the variations of the f i r s t  four equations in  (4.20) (keeping the 
t ime constant), we get 

t&,Le = bnr + wJo~>u, ,3  + vy hZ, - i bto - y ,  + cjgx,; I 

In (4.25) 

k (4.25) 

(4.26) 

where n , .  n y  are determined by (4.7) and 

(4.27) f l  =a' - <, 
I ..,i.:; 

Eliminating a l l  the variables, except u and [ 3 ,  between (4.24)-(4.26) and 
using (4.7), (4.27), (4.8), (4.12), we find 

- ( ~ ~ ~ y p ~ *  + Azo -+ 2 f 02*) p - 2 0 3  = 

. br =-- 

(4.28) 

To this s e t  we add a n  equation for y which is obtained from the third 

\j = - ox$ + oy,a +boz, + Ao.,. 
equality in  (4.24): 

(4.29) 

The init ial  conditions for  Eqs. (4.28), (4.29) follow from the integral  
eq-iations corresponding to Eqs.  (4.25). These are the following: 

(4.30) 

Let us  now derive the equations of e r r o r s  in the coordinates z, S and in 
the azimuthal angle E .  Varying the ninth, tenth, and eleventh equation in  
(4.20), we get 

(4.31) bz = - 6wx0 cos e + h Y , s i n E  + 
+ ( ~ ) x o s i n ~ + o y Q c o s ~ ) &  - u  (&, cosS+p,sinS)13S. 
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(4.31) 

H e r e  h a , .  h.,, &)?, are  determined by (4.24). 
Eqs.  (4.31) are obvicus. 

Eliminating tw,, ~k.)..., hi.. f rom Eqs .  (4.28), (4.29), (1.31) x.x;ith the  a id  of 
(4.21), we obtain six equations in sir unknowns, U. p. y, S E ,  6:. bS. 
equations give the coordinate e r r o r s  ($2. A S ,  the azimuth e r r o r  he ,  and the 
orientation errors of the iner t ia l  platform, i.e., the angles  I(. fi. y .  Eqs .  
14.28), (4.29), (4.31) hhus consti tute the complete  set of e r ro r  equations of 
the iner t ia l  navigation sys tem.  

(2.28), (1.96), (1.97), ( I  -1 16), which are naturally extended to ou r  par t icular  
sys t em as well. However, a more detailed inspection of Eqs.  (4.28), (4.291, 
(4.31) shows that they can  b e  reduced to  Eqs .  (2.28), (1.96), (1.97), (1.116). 

The  init ial  conditions for 

These  

At a f i r s t  glance these  equations are substantially different from E q s .  

Let u s  s t a r t  Kith Eqs. (4.28). where  w e  make the substi tution 

6 x = r p ,  b y =  - ru. (4.32) 

The  variations 6gr. 6gs of the nonspherical gravitation component are  
ignored. To the same approximation, w e  may take 

k (1.33) 
Sf =-7 

and seeing that to f i r s t  approximation 

hr = \ r  = \h, (4.31) 

we get  

(4.35) 



(4.37) 
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correspond to negative e r r o r s .  Indeed, the vector Am was introduced a s  
the instrumental  e r r o r  of the gyroscopic absolute velocity me te r .  
t rea t  the controlled gyroframe a s  an angular velocity meter ,  utilizing the 
magnitude of the control  torques, a positive gyro drift r e su l t s  in a measure-  
ment of angular velocity components which a r e  l e s s  than the actual values 
precisely by the amount of the drift ;  this c lear ly  corresponds to negative 
measurement  e r r o r s  for  positive gyro drift.  

If we 

Thus, 

 am,^= - Aw,,, Am, = - Att),,,, Amzn = --bo,, 

and Eqs. (4.35) and (2.28) are therefore  identical, 
Let us  now turn  to Eqs.  (4.31). W e  introduce new variables* 

u? = - br cos& + bS cos zsinE, 
fi.2 = 62 sin E + 6.S cos z cos E ,  

y 2 = &  +bS?.int. 

Eqs.  (4.31) can now b e  written in the form 

ri, + o*,a, - WX.Y, = bo,,. 

It i s  readi ly  seen  that the var iables  a2. p2, y2 a r e  the total angular e r r o r s  
in the determination of the coordinates and the azimuth. 
var iables  

Introducing new 

ex, = a, - a. O y o  = Pz - P. Bra = y2 - y, 

we obtain f rom (4.38). (4 .24)  

8 , ,  + w*,t)z,. - O)x,ez,  = - AWyo*  

e,, + o,$, - wy,ez, = - A(O,~. 

Using Eqs.  (4.26), we a r r i v e  a t  the second group of e r r o r  equations(l.96). 
Let now 

6x2 = rPz. by2 = - rap 

F r o m  (4.39), (4.32) we then have 

Ox, = rOyo. by, =-re,. 
6x2 = f i x  -I- bx,. by, = b y  + b y , ,  

which coincide with Eqs.  (1.97) if w e  r emember  that in our  case  we should 
take x = y =  0 in (1.97) and drop the relation for  bz, .  

Seeing that by definition 
It now remains  to show that Eqs .  (1.118) follow from (4.28), (4.29), (4.31). 

u = el,,, B = elyo, 
and turning to Eqs.  (4.32), we obtain the f i r s t  two relat ions in (1.118). The 

* And r e e  v, V.D. Theory of inertial systems for autonomous measlwment of the coordinates of a moving 
object. - Prikladnaya Matematika i Mekhanika, Vol. 28, No. 1. 1964. 
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third relation i s  s imi la r ly  obtained. In particular, when E = 0,  w e  have 
from the third equality in (4.37) and the third equality in (1.39) 

n.r, ( 4 . 4 4 )  Y = e,*, = - 02. + 7 ig 2, 

which coincides with Eq. (1.120), a par t icular  case of the third relation in 
(1.118). 

1.2.2. 
orientation of acce lerometers  

Some part icular  ca ses  of azimuthal 

Eqs.  (-1.20) are the .deal operation equations of a two-accelerometer 
iner t ia l  sys tem measu:?ing the or thodromic coordinates. The acce lero-  
m e t e r s  l ie in the plane of the geocentric horizon, but their  attitude (az i -  
muthal orientation) in t k  i s  plane i s  quite a rb i t r a ry .  This  follows f rom the fact  
that the angle f ,  and hence and I f : ,  are  a l l  a rb i t r a ry .  Let us  consider  
some par t icular  values of the angle E and the resulting simplifications in 
the ideal operation equations. 

If 

e = O ,  (4.45) 

the acce lerometers  point along the axes of the co-moving orthodromic 
sys tem.  Eqs. (4.20) reduce to Eqs.  ( 2 . 2 3 ) ,  and if the axes  ;& and Z'q';' 
coincide they fur ther  reduce to Eqs. (2.25) for  the geocentric coordinates. 

Another interesting case is when the angle E is such that 

fai, = 0.  .\I: = 0 (4.46) 

In this case the projection of the absolute angular velocity of the iner t ia l  
platform on the geocentric ver t ical  is zero,  the resul t  being a so-called 
"azimuthally free" sys tem.*  These  sys t ems  do not requi re  a torquer  fo r  
the c a s e  axle  of the gyroscope r, (see Figure 4.2). 

If (4.46) i s  sat isf ied,  the fifth and the eighth relat ion drop out f rom 
Eqs. (4.20) and t e r m s  with w, are  omitted f rom the integrands of the f i rs t ,  
second, and eleventh r i la t ion .  

Note that instead of (4.46) w e  may use  a n  al ternat ive condition 

w. =w: =const, ,tf; = consi, 

which somet imes  (given a n  appropriate  choice of a;,) proves more  useful.  
Let now the angle E be chosen so that 

vx, = VY,,  (4.47) 

F r o m  the f i r s t  two equations in  (4.20) we thus get 

(4.48) 

r t e ,  e.3.. F I i d  l e n d e r ,  G.O. 
i % l .  

Inertsral'nye sisttmy na\igatsii (Inertial Navieation systans).-Flzmdtt;rz. 
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Let us  consider how Eqs.  (4.20) change. Of the f i r s t  four equations only 
two a r e  left: 

(4.49) 

A l l  the equations containing ox, change, s ince now 

wx, = - oy,. (4.50) 

Thus the sixth, ninth, tenth, and eleventh equation in (4.20) give 

I = Hlwy,,  

z =  ~ [ o , ~ ( c o s ~ f s i n ~ ) + u , , ] d t + z ~ ,  

I 
S =  

(4.51) 

0 l E =  1 ~ ~ , ~ - ~ w ~ , ~ ~ ~ s e - s s i n ~ ~ - ~ ~ , ~  tgz+u,,l d t + E ~ .  

The other re la t ions in (4.20) do not change. 
Note that condition (4.47) can  be replaced by a more  genera l  one, 

V K ~  kvy,. (4.52) 

where k is an  a rb i t r a ry  constant coefficient, o r  even by a condition 

= f (Oy,. t ) .  (4.53) 

The corresponding ideal operation equations a r e  readi ly  derived. 
Let us  consider  the re la t ive  m e r i t s  and shortcomings of the azimuthal 

acce lerometer  orientations based on conditions (4.45)-(4.47). 
Using condition (4.46) we eliminate the torquer  of the gyroscope f, and 

simplify the integrands (az,= 0) in the f i r s t  two equations in (4.20). 
condition, however, involves an  additional integration in accordance with the 
eleventh equation in (4.20), which is unnecessary when condition (4.45) is 
used. 
(4.45) in the equations f o r  z and S, i.e., in the ninth and the tenth equation 
in (4.20). 
for  gxa and gyw. On the whole, condition (4.46) is not c lear ly  advantageous 
compared to condition (4.45), when E = 0. 

integrations a s  condition (4.45). When condition (4.45) i s  used, w e  integrate 
to determine vxn, vYo, andwith condition (4.47) integration i s  applied to obtain 
vxp and E .  

(4.47). Also  note that when condition (4.47) is 
used, w,, must  be formed in accordance with Eq. (4.48). 
acce lerometer  readings before integration thus have to be divided by a 

This  

Condition (4.46) leads to more  complicated integrands than condition 

Finally the condition ma,= 0 leads to  m o r e  complex expressions 

Let us  now consider  condition (4.47). It involves the s a m e  number of 

The expressions for  S and z a r e  m o r e  involved fo r  condition 
The r3 torquer  is retained.  

vKu is variable. The 
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variable  quantity. 
of any sys tem using condition (4.47). Thus, condition (4.47), like (4.46), 
does not lead to any simplification in  sys tem design. 
i s  apparently condition (4.45), when E = 0 and the acce lerometers  point along 
the axes  .r , y of the co-moving or thodromic f r ame  x :!J~.. In what follows 
w e  will consider  only this a l ternat ive.  The  corresponding ideal  operation 
equations are Eqs.  (2.23). 

In conclusion note that the ideal operation equations r ema in  exact when 
ei ther  of conditions (4.45)-(4.47) i s  used. 
fore  the s a m e  in these three  cases. These  are  Eqs. (4.35), (4.40), (4.42), 
( 1.1 18) that we have p rev ims ly  analyzed. 

This  constitutes ai- additional fundamental shortcoming 

The most  advantageous 

The  e r r o r  equations are there-  

4 . 2 . 3 .  
spher ica l  figure of the Ear th  

Simplifications which follow f rom the near ly  

Consider  the ideal operation equations (4.20) for  c. = O ,  i.e., Eqs .  (2.23). 
We will t ry  to simplify these equations seeing that the Ea r th  i s  nearly 
spher ica l  and i t s  gravitational field i s  a lmost  central ,  i.e., in  the final 
analysis  we seek  the simplifications associated with the s m a l l  eccentr ic i ty  
of the Clairaut  ellipsoid. 

These  simplificaticns pr imar i ly  apply to the expressions for c k .  g), and 
to the last  two equalities in ( 2 . 2 3 )  which re la te  the geographical coordinates 
h * l { '  to the geocentric coordinates r ,  I F .  

The projection gV. 3f the Ear th ' s  gravitational accelerat ion on the axis y? 
of the co-moving geocentric f rame,  which lies in  the plane of the meridian,  
i s  given by the f i r s t  relation in ( 1 . 2 7 ) .  
only t e r m s  of the o r d e r  e? ,  we obtain 

T o  f i r s t  approximation, retaining 

If F ! .  c .  are formed using the approximate value (4.54), and not the exact 
v , we have from the eighth and the ninth relat ion in  (2.23) 

(4.56) 
a 4  

d +  

:T, = g ,  iq - e : ,  ( 7 )  s iny i -p? :  s i n s  +pj2 cos s), 
c ,  = g,, 'Q- e ' ) [ -  t sinq-(-  E,, sin z cosS - p : s i n  I sinS+p,cos I). 

By (4.55), the e r r o r s  A g . r ,  Agv are 

(4.57) 



(4.57) 

The numerical  values of the constants in  Eqs .  (4.56), (4.57) are the 
following:':' 

(4.58) 

Using these values we can  readily obtain upper-bound es t imates  for the 

R ~ =  978.049 cm/secz, e 2 =  0.0067386. 

4 = 0.00346775, a = 6 378 245 m. f 

e r r o r s  (4.57): 

~ A ~ ~ J ,  I B ~ , I , C  IO-' cni / sec2  = 10-~g,. (4.59) 

In (4.54), (4.56) w e  thus take 

,q , (g -e* )=3- l t i  cmisec ' .  (4.60) 

so that these expressions give gxo, gyo to within 0.01 cm/sec2 .  

distance r .  Eliminating rp, w e  obtain 
W e  will now simplify the las t  two equations in (2.23), which give the 

Expanding the right-hand s ide in  powers of e ,  we obtain to t e r m s  of the 
o rde r  el 

(4.62) 

From (4.61) we get 

r l e ,o=U + h .  I 

Inserting the derivatives f rom (4.63) in  (4.62) we obtain 

(4.63) 

Retaining only the t e r m  with e2, we have 

r=a+h-%sin2cp, ' .  2 (4.65) 

This  is a n  expression for r in  t e r m s  of h and rp'. The geographical 
latitude cp' enters  Eqs. (2.23) only when r is being determined. If r is 

* The values of e2 and 9 are given for the parameters of Krasovskii's ellipsoid: see. e . g . ,  G r a u r ,  A.V. 
Matematicheskaya kartografiya (hlathematical Cartography). - Leningrad University. 1956. The value of 
g, IS from G r u s h i n s k i  i ,  N.P. Teoriya figury Zemli (Theory of the Earth's Figure). - Fizmatgiz.1962. 
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determined to within t e r m s  of the o r d e r  &, the  geographical latitude I ,  

be  eliminated f rom these  equations. Indeed, according to (1.15), the 
difference q'-q+ i s  of the o r d e r  Y : .  

Iatitude q' can  he replaced by the geocentric latitude s,. 

of the o r d e r  2: inclusive, we  have 

can  

There fo re  in (4.65) the geographical 
Hence, to te rn is  

To es t imate  the e rmr  Ar in this expression, we  proceed as  follows. 
F r o m  the las t  but 0p.e relat ion in 1 2 . 2 3 )  we have to t e r m s  of the o r d e r  

To the same approx .mation 

Now (4.64) can  be  writ ten in the  form 
1 -. . 

r = u  i i! --+>in-<p+%-(.ln2qb - s [ , I : y ' , -  
'7 

(4.69) . i , ' . i"'  I,' -____ [ u c 4  - . j ~ i n ~ ~ ~ ~ i - f z ~ i n ~ ~ ' l  - < : - h )  

Comparing (4.69) with (4.66) and using (4.68), we see that the error l r  in 
(4.66) i s  expressed in the f o r m  

this  es t imate  being independent of h .  

acce le romete r  system, Eqs.  (2.23), in  the simplified f o r m  
Using (4.66), (3.57), we  wr i te  the ideal operation equations of a two- 

I 

zb,t = i (nx + 'V o - ;W -+ g ) dt +- cl:;.. 
Yu 2, Y I; , 

I 

to>,, = (nY, - vx,w, -k ;ux, + gy ) dt + 
=_ 5, 0 ,  =L. 

1 r '  
(4.72) 
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-ppj,sin zsinS+pScosz); 

sin cp = p31 cos z cosS + P31cos z sin S + pasin z ;  

MZ = - HN,,. M: = Hla,,,, M i  = - H3a2,; 

(4.72) 

r = /z + a ( I - f sin2rp). 

Let us  establish how these simplifications affect the e r r o r  equations 
(4.35). The left-hand s ides  of these equations clear ly  do not change, s ince 
Eqs.  (4.72) include al l  the t e r m s  which enter  the exact equations (2.23). The 
simplifications introduced in Eqs.  (4.72) only change the coefficients in the 
left-hand s ides  of the e r r o r  equations (4.35) by t e r m s  of the f i r s t  o rde r  of 
smallness .  This  is of no consequence, since on being multiplied by 6x, 6 ) ~ ,  
&, 6; these t e r m s  give a second-order contribution. 
the left-hand s ides  of the f i r s t  group of e r r o r  equations thus do not change. 

intrinsic instrumental  e r r o r s  An,,, An,,, Aax0. Sa,,, Am3, cer ta in  equivalent 
instrumental  e r r o r s  a r e  added. 
determined by retracing the previous derivation of the e r r o r  equations (4.35). 

acquire equivalent accelerometer  e r r o r s  An,,. Any, associated with the 
simplification introduced in the expressions for  gxo, gYo, so  that 

To f i r s t  approximation, 

The right-hand s ides  of the e r r o r  equations do change, however. To the 

These equivalent e r r o r s  a r e  readi ly  

The right-hand s ides  of the e r r o r  equations (4.35) will additionally 

X" = Jgxo, Any,= Ag,. (4.73) 

where Agr, and Agye a r e  defined by (4.57). 
simplifications adopted in the expressions for  gxo, gyo a r e  equivalent to 
accelerometer  e r r o r s  of the order  of 
ignorable. Their  effect i s  definitely negligible a t  velocities substantially 
l e s s  than the c i rcu lar  orbit velocity. 
e r r o r  equations in two-accelerometer systems,  ca r r i ed  out in Chapter 2. 
The e r r o r s  associates  with deviations (4.73) for motion with any velocity 
can be readily estimated using the expressions of Chapter 2. 

A r = A / z ,  where Ah i s  the al t imeter  e r r o r .  By adopting the simplified 
expression (4.66) for  r ,  we add the e r r o r  (4.70) to the al t imeter  e r r o r  A h .  
This  equivalent a l t imeter  e r r o r  does not exceed 180m according to (4.71). 

Note that a t  a f i r s t  glance it may seem that the e r r o r  Ar in thecalcula-  
tion of r should lead to cer ta in  equivalent gyro  drift e r r o r s  Jw,~, Aay0, Loz, and 
thus change the right-hand s ides  of the second group of e r r o r  equations 
(4.40). 
re lat ions in (2.23) and (4.72). 

Estimates  (4.59) show that the 

g,. Such e r r o r s  a r e  often 

This  follows f rom the analysis of the 

The right-hand s ides  of the e r r o r  equations (4.35) contain t e r m s  with 

This  impression is based on an examination of the third and fourth 
Indeed, they give 

(4.74) 
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and the e r r o r  >r thus involves the following equivalent e r r o r s :  

I I r  

Jr 

A& =--w +> 7 , AGy* = - my. 7,  

A&, = - oy 7 tg 2. 
(4.75) 

The l a t t e r  c lear ly  resu l t  in additional torques being applied to the inertial  

Examination of the , tnt i re  s e t  of variational equations corresponding to 
platform, which a r e  equivalent to gyro  drift .  

Eqs. (2.23) shows that this i s  not so. Indeed, the e r r o r s  .&,. A&, specified 
by Eqs.  (4.75) enter  the f i r s t  two equations in (4.24) together with the gyro 
drift components, and hence they a r e  ca r r i ed  over  to Eqs.  (4.28) and (4.35). 
However, A & .  I&, , unlike the gyro  drift,  a l so  en ter  the right-hand s ides  of the 
f i r s t  two equations in (4.31), and therefore  drop out on passing to Eqs. (4.40), 
since in the process  we take differences (4.39) of Eqs.  (4.24) and (4.31). 

\I:!, therefore  do not en ter  the right-hand s ides  of the f i r s t  two equations of 
the second group (4.40) and thus do not produce equivalent gyro e r r o r s .  

A(::, does not en ter  the right-hand s ide  of the third equation in (4.24), 
since he re  Jl$: i s  by de:finition an instrumental  e r r o r  independent of hc,, lay , 
Lvhereas A,;!: according to the second and third equations in (4.75) i s  equal to 

t g r .  It i s  readi ly  seen  that GZ en te r s  Eq. (4.29), s ince  it i s  contained in 
the t e r m  tg E .  In forming the third equation in (4.40), however, I&> drops  
out. 
produce equivalent gyro drift  ei ther.  

It does not en ter  ';he right-hand s ide  of this equation and does not 

If using (4.75) w e  replace A@,,;, Awy*, Ao, in the right-hand s ides  of (4.35) by - . -  
JW,~,, A~~~~ , la2, ,  H." get 

- 

I 2; Siy. -i- r GY, + rwXa G2, + r o l ,  = 
' >r . - _  - my, - wy, Ar--wxa-wzo Jr - 

(4.76) 

However, the right-hand s ides  of (4.35) include Jr not only through A&, 
A&>,,  
- vr;o.. T&rb in the integrands in the f i r s t  two equations of (2.23) o r  (4.72). 
These variations a r e  given by 

but a l so  through the var ia t ions of the t e r m s  V ~ , ~ ~ , - ~ ; O ~ ,  and 

(4.77) 

Adding (4.77) to the right-hand s ides  of (4.76), w e  obtain 

I - Pwy, - (wx,-wr, + oy.) I r .  

2u).,, G - (wy,(o,, - i + , ~ r .  

These  expressions actually coincide with the right-hand s ides  of 
Eqs. (4.35) containing 3 r .  

(4.78) 
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The e r r o r  \r  associated with the approximate calculation of r i s  equiva- 
lent to the al t imeter  e r r o r .  
group of e r r o r  equations and in their  t u rn  are equivalent to some accelero-  
m e t e r  e r r o r s .  The right-hand s ides  of the second group of e r r o r  equations 
a r e  not affected, so  that no equivalent gyro e r r o r s  a r e  involved. 
s een  in the preceding that this  is associated with the simultaneous appearance 
of \ I O ~ , , ,  hY,, AI& in the expressions for  the control torques and in the expres-  
sions for the coordinates z and S. This  fact is attr ibutable to the common 
origin of the e r r o r s ,  namely the deviation \ r .  

If the e r r o r s  L\6,, \(:), , \;I, associated with some other factor w e r e  to 
appear only in the equations for  the coordinates,  or alternatively only in the 
equations of the control torques,  this would definitely change the right-hand 
s ides  of the second group of equations and hence resul t  in e r r o r s  equivalent 
to gyro drift .  

They both en te r  the right-hand s ides  of the f i r s t  

W e  have 

. -  

An appropriate example w i l l  be considered in the following. 

4.2.4. Simplifications associated with the 
closeness  of the t ra jectory to the Ea r th ' s  
surface and the orthodromy plane 

The simplifications of the ideal operation equations considered in the 
previous subsection w e r e  independent of the par t icular  t ra jectory of the 
object: they were entirely attr ibutable to the s m a l l  flattening of the Ea r th .  
It i s ,  however, natural  to  expect that knowledge of the par t icular  propert ies  
of motion of the object using the iner t ia l  navigation sys t em will substantially 
simplify the sys t em operation and design in s o m e  c a s e s .  In what follows we 
consider the simplifications associated with the par t icular  geometr ical  fo rm 
of the t ra jectory (without imposing any r e s t r i c t ions  on the velocity of motion, 
however).  
and to the orthodromy plane z = 0, i.e., we a r e  considering cIose motion for  
sma l l  values of h and z .  
which cover  present-day and future a i r c ra f t  flight alt i tudes.  
z a r e  taken to be of the o r d e r  of 100-500 km. 

equation. 
equations and the eighth and ninth equation for gxnr gyo. 

tion for s m a l l  h .  

W e  w i l l  be dealing with t r a j ec to r i e s  c lose to the Ea r th ' s  su r f ace  

Typical alt i tudes a r e  of the o r d e r  of 50--100km, 
The values of 

Turning to Eqs .  (4.72) we note that h en te r s  explicitly only the last 
It i s  through this relation that i t  fur ther  e n t e r s  the f i r s t  four 

The l a s t  equality in (4.72) c lear ly  does not require  any fur ther  simplifica- 

The expressions for  ( I ) ~ , ,  oy, for  s m a l l  h can  be wri t ten in  approximate 

The  e r r o r  in the determination of the projections of the absolute angular 
velocity of the axes  n,y,z, f r o m  these relat ions are equivalent to s o m e  
additional e r r o r  in r ( apa r t  f rom (4.7 0)) 

i\r' = a  (Te2sin2cp+$sin4cp h --;;.). l l>  

I58 

(4.80) 



-\r' g 500 m, (1.81) 

and for  / I  100 km, 

A r ' S  t 5 km. (4.82) 

The additional e r r o r  (-1.80) en ters  only the third and the fourth equations 

The  equivalent acce lerometer  e r r o r s  for  3r' are 
in 14.72). 
last expression in (4 .72) .  
therefore  

In the integrands of the f i r s t  two equations r is taken f rom the 

w h e r e a s  for the e r r o r  \r we had, by (4.78), 

= - iot 6.1.. + &, ) \r - :m 1;. 
= - ii.1 <A: - m, 1 \r + zu), \r I .I; 

Note that Eqs .  (4.791 can  a l so  be written in the form 

(1.83) 

(4.84) 

(4.85) 

Here  the f i r s t  t e rms  in the right-hand s ides ,  which make  the principal 
contribution to the sums,  are obtained f rom v t . .  z'., which are multiplied by a 
constant factor 1 / a .  In other  words, they differ f rom z i r .  v,", in scale only. 
The  second t e r m s  are sma l l  compared to the f i rs t ,  as they are formed using 
sin2(( and h .  Therefore  the function sin2T may  be taken with a fair ly  large 
e r r o r .  
in the right-hand s ides  of Eqs.  (4.85) can a l so  be performed relatively 
crudely. 
form (1.83) are often used in  sys t ems  employing analog computers .  

ra t io  d / r + .  
using the las t  express icn  in (4.72) 

The  o ther  operations requi red  for  the formation of the second t e r m  

Representations of the 

They contain the 
Ser ies  expanding this ra t io  in  powers of e and h;a, we obtain 

The  only exact operation h e r e  i s  addition. 

Consider  the eighth and the ninth equation in (4.72). 

(4.86) 

For alt i tudes of the o r d e r  of 100 km, we need only take the f i r s t  two 

(4.87) 

(4.88) 
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Comparison of these expressions with the corresponding equations in (4.72) 
leads to the following equivalent accelerometer  e r r o r s :  

(4.89) 

which are added to the e r r o r s  (4.57). 
approximately 

F r o m  (4.89) for h = lOOkm w e  have 

I 1, 1 A i y b  j 5 . iO-5g,. (4.90) 

For altitudes of about 50 km, w e  can fur ther  drop the t e r m  4h/a in (4.88),  
which gives 

I An",? I. 1 A i , , ,  1s 10-4g,. (4.91) 

It follows f rom the preceding that a t  altitudes of 50-100 km the functions 
wi, uy,. g, ,  R ,  can  be formed using fair ly  crude information on ti ~ and in 
some c a s e s  the altitude may even be replaced by a constant average value. 
The al t imeter  is then required only in forming the ver t ical  velocity I ; ,  which 
en te r s  the integrand in the f i r s t  two equations in (4.72) (according to (4.69), 

Therefore  for sma l l  ver t ical  velocities an autonomous system 
without any al t imeter  correct ion may prove to  be sufficiently accurate .  

Let us  now consider the simplifications result ing f rom the fact that the 
t ra jectory is close to the orthodromy plane z = 0. 
when the object is automatically guided by an iner t ia l  system which maintains 

= h+ ...). 

This  c a s e  applies, e.g., 

with fair precision the programmed tr 
z = 0. Putting z = 0 in (4.72) and using 

'ajectory 
(4.851, ( 

(4.92) 
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To est imate  the corresponding e r r o r s ,  let u s  consider  the error  
equations. 
do  not change. 
\ t i ; ,  \n;, \P;!, \,:I, 
of Eqs'. (4.92) and (4.72). 
errors which a re  functions of : and a r e  added to the previous errors. 

pr imar i ly  because we calculate s i n  l i  f rom a simplified expression,  and the 
e r r o r  in the s ine leads to errors in r and g c ,  5. . Another sou rce  of the 
equivalent acce lerometer  e r r o r s  i s  the simplified express ion  for obi and for 
the fac tors  containing : in the equalit ies fo r  v, .  ~f . 

The  left-hand s ides  of the e r r o r  equations (.1.35), (4 .40)  c lear ly  

They can  be  found by comparing the right-hand sides 
Let u s  calculate those equivalent instrumental  

The  right-hand s i d e s  acqui re  equivalent instrumental  errors 
\(,;:. 

We will f i r s t  consider  the equivalent acce lerometer  errors.  They  arise 

Comparison of the expressions for s i n  at in Eqs'  ( 4 . 7 2 )  and 14.92) gives  

A>rrl I (  .= cflII COS& 7 6  . \in 2 ' 1 1  1 - iris :I - f i  2111 :. (4.93) 

Let z be  so small tkat we may take 

,In i = ty z = 2. <lis : = I - f , (4.94, 

Then retaining only ?he leading terms in  (4,93),  we get 

Using the express ion  f o r  r f rom Eqs.  (4.92) we thus get  

\r = U*-II;>~ CUSS --p ~ \in.Sip , z .  (4.96) 

Similar ly  

(4.97) 1 \ q t  = - . > , ~ i q - r 2 t ( - f i , s i n S  s - - a  , c . o s S , ~ p ,  z .  
Ag!, = - g<((q- e - , [ e , - - f i , , w s S + f i  :sinSf];, 
Lw: = - < a \  2 ,  i 

Examining the right-Aand s i d e s  of the error  equations ( 4 . 3 5 ) ,  we thus 
obtain the equivalent acce le romete r  errors 

H e r e  l r .  lg,,. -\,qs,, h2 a r e  given by Eqs .  (3.96), (4.97). andtheexpress ions  
f o r  I - I , , .  O I * ,  

2 = 0. 
are  obtained from (4.14)-(4.16) where  we should take e = 0, 

These  express ions  have the f o r m  

(4.99) i L ' ) ~ .  = - z + u (-p:, s i n s  +pjr  cos S ) ,  

a,:, = s up 12, 

w: = u ( @ , ~  cosS+p,,sinS), 

which cor respond to the seventh, s ixth and eighth equality in  (4 .92) .  

hy Eqs .  (4.98).  
b'e will  now der ive  numer ica l  e s t ima tes  of the errors iny,  expressed  
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Let 

I z = i" = const > 0 ,  
r = a + h (-= a )  = const. 

rS = VO,  
(4.100) 

i.e., let the object move paral le l  to the orthodromy plane ( a t  some distance 
2" f rom it) with constant velocity Vn a t  a fixed distance from the Ear th ' s  
center .  Then from (4.95)-(4.99) we get 

If 

(4.101) 

(4.1 02) 

which is applicable a t  velocities grea te r  than lOOOm/sec, Eqs.  (4.102) can 
be fur ther  simplified: 

(4.1 03) GI,, = - zo (- p31 sin s + pJz cos S )  U V O ,  

V" s;E,, = - 2"V" [ y + 2 u 4  . 

Seeing that 

w e  find 

1 A;& 6 t"uV0, 

A&, .s ZOL'O (~$ + 2 u )  * 

For ~ 0 = l 0 0 0 m / s e c  and zo=15'  ( rz0=25km),  we have 

(4.104) 

I &ixo 4 0.3 cm/sec2 a 3 . 10-~g,, 

A t & , S  1.25 cm/sec2 - 1.25.  10-3ge. 
(4.105) 

Let us now determine the equivalent instrumental  errors A&, Ai& 
(i .e. ,  the equivalent gyro drift components) entering the right-hand s ides  of 

* ~ ~ ( 4 - e - e ' )  is of the order auz, and the terms containing this factor have therefore been retained here. 
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t h e  second-group e r r o r  equations (4.40). Since the expression for  I in  
Eqs. (4.92) is the s a m e  as in Eqs.  (4.72), w e  have 

hr, = u. (4.106) 

Comparison of the equations for  S and o1 in (4.72) and (4.92) on the 
other hand gives 

Hence the es t imates  

(4.107) 

(4.1 08) 

For 1”) = 1000 m/  sec,  z0= 15’, we have 

I 16 0.06 deglhr. 1 A<& I ,< 0.2 deg/hr . (4.109) 

Es t imates  (4.104), (4.108) show that the ideal operation equations (4.72) 
can be simplified to Eqs .  (4.92) only if  the deviations of the object f rom the 
orthodromy plane are indeed ve ry  small .  Thus, a l ready for  deviations of 
about 2 5  km (a t  velocil.ies P” 1000m/sec) ,  the corresponding e r r o r s ,  as 
w e  see f rom the numerical  es t imates  (4.105), (4.109), are fa i r ly  large 
and may prove to be unacceptable in high-accuracy sys tems.  
have seen  in Chapter 2, the constant e r r o r s  .I;.,, A&> lead to the following 
position e r r o r s  

Indeed, as we 

( 4.1 09a) 

and the constant e r r o r  A&y, produces the coordinate e r r o r  

axl = r A;,,t. (4.110) 

Es t imates  (4.104). (4.108) therefore  correspond to  the following total 
position e r r o r s :  

(4.111) 

Hence, using relations (4.105), (4.109), we obtain the following numerical  
es t imates  for  e r r o r  buildup in  1 hour of sys t em operation ( the t ime factor  i s  
significant only for  ax,): 

( 6 ~ ~ ( 4 1 O k m ,  1 6 ~ ~ 1 4  15km, (4.112) 

On passing f rom Eqs. (4.72) to  Eqs.  (4.92) we took s in  z= 0, cos  z = 1. A 
substantial improvement is accomplished if  we take the next approximation, 

sin z = z ,  cos z = 1. (4.1 13) 
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The fifth, sixth, eighth, and the last  two equations in (4.92) t h e n  take the 
form 

(4.114) 

Eqs. (4.95), (4.96) a r e  replaced by 

(4.115) 

Eqs. (4.97) take the form 

Agx,=g,(q- e2) g(p3, c0ss-t- p3ZsinS)(--831slnS+832cosS), 

~ g , "  = ge  (4 - e?) $(- p31 sin s + pa2 cos S) pa. 

hoZ, = -u + (pzl cos s i- pa2 s i n  s). 

Note that we have previously established that the e r r o r s  a r e  

(4.116) 

The corresponding position error est imates  can be derived without any 
difficulty. 
mainly associated with AwyQ and Ao,,. Here the situation i s  basically the 
same.  The equivalent accelerometer  e r r o r s  and gyro drift, corresponding 
to Ao,,, Ao,, a r e  found to be 

(4.117) 

From (4.117) we thus have 

I Aix ,  6 0.015 cm/secz - 1.5. 10-5g,. 

an",, 6 0 . 0 7 5  cm/secz * 7.5. 10-~g,. 

A;, < 0.04 deg/hr, A& ,< 0.008deg/hr, 

(4.1 18) 

(4.119) 

Comparison with est imates  (4.105), (4.109) shows that Eqs.  (4.114) are 

Eqs.  (4.114) were derived by inserting from (4.113) in the corresponding 
much more  effective than the corresponding equations in (4.92). 

equations in (4.72), whereas (4.92) were derived putting s in  z= 0, cos z =  1 in 
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a l l  the relations a t  the s a m e  time. T h e r e  i s  another alternative however: 
in the expression for s i n  t i  w e  may put s i n  I = 0, cos  z = 1, and in the 
expressions f o r  S and o ) ~  w e  may take sin:  = z r  cos  := 1 .  For  velocities 
of up to 2000 m/  s e c  and deviations of up to 200 km from the orthodromy 
( z -  2") this gives es t imates  c lose to (4.119) .  

In conclusion note that the integrands in the f i rs t  two relations in ( 4 . 9 2 )  
contain io,, and ;ax,. For velocities s m a l l  compared to the c i r cu la r  velocity, 
r can be replaced with b in these quantities. 
equivalent accelerometer  e r r o r s  

This  will lead to additional 

( 4 .I 2 0 )  

4.2.5. 
horizontal component of the Ea r th ' s  gravitation 

Different methods of accounting for  the 

it'e have so f a r  considered simplified ideal operation equations derived 
from approximate representations of individual relations and expressions 
entering these equations. 
drop some  t e r m s  o r  form them approsimately a s  a function of t ime using 
the pa rame te r s  of the programmed trajectory.  
permissible  if the object has  a definite programmed trajectory to which it 
keeps with sat isfactory accuracy. 

The integrand in the f i r s t  
two equations in ( 2 . 2 3 )  contains the A,) and y,, projections of the Ea r th ' s  
gravitation, i.e., 

Fu r the r  simplification can  be accomplished i f  w e  

The la t ter  approach i s  

Let us consider  one of such simplifications. 

i 4 .121 )  

these functions a r e  formed using the coordinates .S and ( 1  which a r e  
measured by the inertial  system. Let us  elucidate what e r r o r s  a r e  involved 
if these projections, character iz ing the nonspherical gravitation component, 
a r e  omitted. 

f rom the f i rs t  two equations in (4.121) c l ea r ly  introduces the following 
equivalent acce le romete r  e r r o r s  in the right-hand s ides  of the e r r o r  
equations (4.35): 

The omission of these horizontal components of the Ea r th ' s  gravitation 

(4 .122)  

LVe will confine the discussion to a n  object moving with constant velocity 
1'8' a t  a constant distance r" f rom the Ea r th ' s  cen te r  in the orthodromy plane 
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z = 0. 
we obtain at any t ime 

Taking the angle S to be initially ze ro  (without loss  of generality), 

VQt (4.123) s = -- =sot. 
r Q  

Since for motion in the orthodromy plane z = 0 

siiirp=PRI cosS+p32sinS, 

Eqs.  (4.122) for A;), take the form 

Anyo = - ge  (4  - e2) B,, (PJ3 cos S + p32 sin S ) .  J 
where S i s  expressed  by (4 .123) .  

hand s ides  of the e r r o r  equations (4.35) contain only A&. A&,. 
equations thus take the form 

Suppose that there  are no intrinsic instrumental  e r r o r s  and the right- 
The e r r o r  

(4.125) 

where 00' = p/ro3. 
Let SO be sma l l  so  that 

(SO + u)2 << w;. (4.1 26) 

We have seen  in S2.3 that in this ca se  Eqs.  (4.125) can be replaced by the 
simplified equations 

(4.127) 

The solutions of these equations coincide to high accuracy with the 

Taking ze ro  initial conditions for E s s .  (4.127). we obtain their  solutions 
solutions of Eqs. (4.125) a t  least during several  periods of frequency wo. 

in the fo rm 

6.r = -!- ( AGx,,(r) sin 00 (t - r )  dr, 

b y = & s  A~, , ( r ) s in~( t - r )dz .  

' 
WO 

I 

0 

(4.128) 

Inserting for  A&", An", their  expressions f rom (4.124) and integrating 
(using (4.123)), we get 

-u - 
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Expanding these expressions in powers of and retaining t e r m s  of 
the o rde r  (S')Q),:I?, w e  get 

(4.130) 

(4.131) 

$- [83,8& (cos oOf --os s) - 831832 Stn 

According to (4.43), (4.32), the e r r o r s  bx,  6y correspond to a deviation of 
the ax is  z of the inertial  platform f rom the direct ion to the Ea r th ' s  cen ter  
by the  angles  

qr, =-.by 8 - (4.132) fa 8 l Y o -  F -  

On the other  hand,, 

(4.133) 

a r e  in fact the angles  which charac te r ize  the deviation of the gravitational 
accelerat ion vector  f rom the direct ion to the Ear th ' s  cen ter .  

deviates f rom the direct ion to the Ea r th ' s  cen ter  by 
From (4.130)-(4.133) i t  follows that if initially the platform z axis 

i.e., it points along the gravitational acce lera t ion  vector, and it has  a n  
additional angular velocity such that 
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the z axis  of the platform wi l l  remain  caged to the gravitational acceleration 
vector to within 

. "  

(4.136) 

Here  
a = p31p33 (cos o,f - cos S )  - @31p32 sin S ,  
b = 2p31& (cos o,t - cos 2s)  - (8'& - sin 2s. (4.137) 

We choose ol,=n,, in accordance with Eqs. (II.4) in Appendix 11. Then 

p31 =slncp,, 832=cos(p1cos$0~ 832=co~(Plsin$~. 

where 'pl i s  the latitude of the s tar t ing point, and $o is the angle between the 
orthodromy plane z = 0 and the northward direction at  the s tar t ing point. 

Inserting these expressions for  P r j  in Eqs.  (4.137) for  a and 6 ,  we get 

(4.138) 
1 .  a = y sin 2cp1 [sin q0 cos od - sin (go + S)]. 

b =sin2'pl cos$o(coso&--cos2S) - ( (~os~cp ,cos~$~-s in~cp~)s in2S.  

F r o m  these equations we get 

i n a x a = I .  maxb=2. (4.139) 

The la t ter  value is obtained for  q1=$ and q0= 0. In virtue of (4.139), 

we have the est imates  

(4.140) 

F o r  sea vessels ,  when the velocity relative to the Ea r th  is less than 
50 knots (=== 30 m /  sec) ,  the right-hand s ides  of Eqs.  (4.140) are vanishingly 
small .  
vanishingly sma l l  velocit ies in the expressions for BlX,. ely* makes even the 
t e r m s  l inear in exceedingly small .  Indeed, 

Turning to Eqs.  (4.132), (4.131) we s e e  that insertion of these 

(4.141) 

and for  9 corresponding to a velocity of 50knots the right-hand s ides  of 
Eqs.  (4.141) a r e  a t  most 0.04' and 0.02', respectively. 
Blue w e  obtain the approximate expressions 

Thus, for elr, and 
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Eqs.  (4.1421, in par t icular ,  provide a n  answer  to the question presented 
at the  end of 53.2, namely what will  be the r e su l t s  if the horizontal gravi ta-  
t i o n  component i s  not compensated in the gyrocompass horizon. Comparing 
Eqs. (3 .106)  for  the compensating torques .if: I .If:, with Eqs .  (4 .124)  for  \;! , 
\it , w e  readi ly  s e e  that Eqs. (4.132) give the dev'iation of the i ax i s  of the 
gyrocompass horizon f r o m  the geocentr ic  ver t ical .  Hence i t  follows that if 
initially the : axis  of the gyrocompass horizon i s  pointed along the Ear th ' s  
gravitation vector  ( i . l ? . z  along the gravitational ver t ical) ,  i t  will  remain  
caged to the gravitational ver t ica l  with high accuracy.  

inequalities (4.140) a r e  negligibly smal l ,  and the right-hand s ides  of (4.141) 
are respect ively equsl  to 0'. 13 and O'.O?. 

For  suhsonic craft., when \''I < 300 m /  sec, the right-hand s ides  of 

For  flight speeds Le'!- lOOOm/sec, w e  have f rom inequalities (4.140) 

0.'7. I I I J l  t. 1 < 5 . lo-; - ( ) . ' I T ,  I I < 2 . (4.1 43) 

The  corresponding es t imates  in  (4.141) are  01.34 and 01.17. 
Thus, if the t e rms  character iz ing the horizontal gravitation component 

a r e  dropped f rom the f i r s t  two equations in (4.?2), then in case of low 
\?elocities, e.g., up to 300 m /  sec, the following t e r m s  should be additionally 
introduced in the r igt t -hand s ides  of the fifthand the sixth equations in(4.72):  

(4.144) 

F o r  velocities of trie o rde r  of 1000m/  sec, in the three  equations in (4.72) 
used in forming the gy ro f rame  control  torques, the projections 6 1 , ~ ~ ~  uy,,  wz, 
should be replaced with w , ~ : +  lau>. w , . , + J t ~ ~ .  wz. +JQJ~,, where 

(4.1 45) 
h: i=- tz 2. 

-4t any velocity, the gyrof rame i ax i s  should be initially d i rec ted  along 
the gravitational ver t  .cal .  
Eqs. (4.72) by eliminating g,<., gy  f rom the f i r s t  two equations and adding 
relat ions (4.144), (4.145) to the 'system. Indeed, the amount of computational 
work will not be reduced, whereas  to or ient  the platform i ax i s  along the 
gravitational ver t ica l  is no easier than along the geocentr ic  ver t ica l .  

A different approach is possible, however: instead of dropping the t e r m s  
g.t; g,,, character iz ing the horizontal gravitation componenis in  the integrands 
in the f i r s t  two equations in  (4.?2), it would be bet ter  to omit the projections 
of the gravitational components on the axes  x,,. y,.,. 
express ions  s imi l a r  to (4.144), (4.145), the platform z axis  c a n  be initially 
or iented along the gra.vitationa1 ver t ical .  
this orientation (with sl ight e r r o r s )  during the en t i re  c o u r s e  of motion. 

acting on a unit m a s s  a t  the point 0 are given by 

It i s  therefore  inadvisable to t r y  and change 

In this  case adding 

The  platform axis  will  then re ta in  

The  x, and yo projections of the centrifugal force  of the Ea r th ' s  spin 

1 (4.146) 
f x ,  = - ru2 sin rc (- pj, sin S + p:.? cos S). 
f u . = -  r u ' s i n ~ ( - - p , , s i n z s o s S -  I -pas in  r s i n S f ~ ~ ~ ~ ~ ~ ) .  
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The integrands of the f i r s t  two equations in (4.72) can be written in the 
form 

flxo + vy, ox, - ray, + gx, = 

= n, + vyp2,, - ray, - fx, - 
- gee2 sin q(-fipJ, sin S +P32 cos S). 

flyo + ; o x o  - V . r , , ~ Z ,  + g, = 
= fly,, + rwxo - v x , a z ,  - fv. - 
- geezsinrp (- sin z cos S - 

-pP02sinzsinS+P,cosz). 

(4.1 47) 

The f i r s t  two equations in (4.92) now take the form 
t 

V x -  Iflx, + Vy,ox, - ;6)y0 - fx, - 
0 

-ge e2sin cp(- pjl sin S+p, cos.$)] d t  +e,. 
f 

V y ,  = I 1%" + ; o x "  - V X , ~ Z ,  - fy, - 
0 

- g,e'sin cp (- pjl sin z cos S - 
- p32 sin z sin s + 6% cos z)  1 d t  + vR. , 

(4.1 48) 

The las t  t e rm in the integrand can be omitted. Using Eqs. (4.146) we get 

( 4.1 49) 

1 

1 

+ r u 2 ~ i n r p p ( - - ~ , s i n z c o s S -  

- p32 sin z sin s -+-ps cos z)  I d t  + v:.. 

On the right in the e r r o r  equations (4.35) the following equivalent accele- 
rometer  e r r o r s  now appear: 

(4.150) 
A i x o  = g,e2 s in  cp (- p3, sin S + p,', cos S). 

ilriy,=g,e2sinrp(-p3, sin Z C O S S -  p32sinzsinS+p33cosz).  

Inserting the expression for  s in  rp in t e r m s  of the tr igonometric functions 
of the angles S, E and constants p i j ,  w e  obtain for E = 0 

(4.151) 
A&, = g 2 ( 8 3 1 8 3 3  cos S+831832 sin s). J 

The right-hand s ides  of Eqs.  (4.151) differ f rom Eqs. (4.124) only in a 
constant factor (just  like Eqs. (4.150) differ f rom Eqs.  (4.122)). The solution 
of Eqs. (4.125) is therefore  (4.131) and a l l  the previous conclusions derived 
from this solution remain  in force. In par t icular ,  the est imates  (4.140) and 
the equalities (4.141) a r e  applicable, the only difference being that e2 is 
substituted for  ( e 2 - q ) .  Since e2=2(e2-q) the above numerical  es t imates  a r e  
doubled. 
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Thus, for  sma l l  velocit ies of the object re la t ive to the Earth,  the f i r s t  
two equations in (4.?2) can  be replaced by Eqs.  (4.149), adding on the right 
in the fifth and the sixth equation according to (4.144) and (4.150) the e r r o r  
t e r m s  

(4.152) I 1.5 =-uizt.;ini( i - f iB, ts inzcosS- 
- p,: sin z cos S + f i U  cos z ! ,  

i- pi, s i n  S + pi. cos SA I:=-- d ,  .In'+- 
\.,;. 

and incrementing the components (,bil (b!, . t,!: in the corresponding equations 
in (4.72), according to (4.145), by 

(4.1 53) 

where 
ax is  is pointed along the gravitational ver t ical ,  without changing the 
azimuthal or ientat icn of the platform. In accordance with the above 
est imates ,  the position e r r o r s  fo r  sea vesse l s  and subsonic craft moving 
c lose  to the Ea r th  are negligible, and the platform z axis  i s  s teadi ly  caged 
(with minor  e r r o r s )  to the gravitational ver t ical .  
(4.153), w e  introduce a n  orientation e r r o r  of some  OI.25 and a pos i t ioner ror  
of about 0.5 km. 

for cor rec t ions  (4.145) are = 2.5 km, and the orientation e r r o r s  are 
These  e r r o r s  are quite substantial. It should be remembered ,  however, 
that only the upper-Dound e s t ima tes  have been derived, and the actual  
e r r o r s  are  much sma l l e r .  

I;, . d, a re  determined by Eqs.  (4.150), andini t ia l ly  the platform z 

Neglecting the t e r m s  

For  velocities of the o r d e r  of 1000 m /  sec, the position e r r o r s  allowing 
1I.4. 

4.2.6.  Other  simplifications 

Let us  consider  one fur ther  possibil i ty of simplifying the ideal operat ion 
The  integrands in the simplified equations (4.149) contain equations (4.72). 

t h e  s u m s  

They can  be written in the fo rm 

( 4.1 55) 

If fo r  r we use  the approximate express ion  (4.65) and a s s u m e  sma l l  h ,  3, 
and i, Eqs.  (4.155) can  be simplified as follows: 

(4.156) 
t',,w,, - io,,,- f ,  = - io, ,it - usox, sin z + U;K sin q,  

;Lr --vr,aZ -ffY = ~~, i r -uaS(~ , ,+~~s inacosg) .  

The resul t ing e r r o r s  are c l ea r ly  equivalent to s o m e  acce le romete r  
e r r o r s  and can  be eas i ly  found by subtract ing the right-hand s ides  of 
Eqs.  (4.155) f rom the right-hand s ides  of Eqs.  (4.156). 
e r r o r s  show that they are negligible fo r  subsonic veloci t ies  n e a r  the Ea r th ' s  

Zs t imates  of these  
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surface.  
1000 m /  sec  as well. 
system. 

The right-hand s ides  of Eqs.  (4.155), (4.156) depend on the velocity 
re la t ive to the Ea r th  in  such a way that they vanish when the object i s  
s ta t ionary relat ive to the Earth.  
to the Earth,  the right-hand s ides  of Eqs.  (4.155). (4.156) are a l so  sma l l  
(by virtue of continuity). Thus, for  a sea vesse l  moving on the Ear th ' s  
surface near  the plane z = 0 we find (seeing that i t s  velocity i s  much less 
than the per ipheral  velocit ies of the points on the equator due to the Ea r th ' s  
spin) 

In some  cases  these e r r o r s  can be ignored a t  velocities of 
It all depends on the accuracy s tandards of the iner t ia l  

For sma l l  velocities of the object re la t ive 

w ~ 1 ) ~ .  - T o y o  - f,, = a u i  sin ip, 

T ~ ) X ,  - wX,wr, - f - - auS (fix? + sin ip) .  

X" 

For speeds of some  50 knots, when ta i l ,  l a S ( < 3 0  m /  sec,  we have 

(4.157) 

If the ship 's  position has  to be fixed to within 1-2 nautical mi les  
(= 1.8-3.6 km), 
ignored. 

the t e r m s  (4.156) in  the integrands of (4.149) can be 
Eqs. (4.149) then take the fo rm 

I I 

(4.158) 

If the object 's position has  to be determined to within bet ter  than 1 mile, 
o r  i f  much higher speeds are considered (e.g., of the s a m e  o rde r  of magni- 
tude as the per ipheral  velocity on the equator), the t e r m s  (4.156) can no 
longer be neglected in Eqs.  (4.149) 

(4.155) can be formed using approximate values of the relevant var iables  
and parameters .  Here  we are faced by two alternatives:  the information on 
the relevant var iables  which en ter  (4.155), (4.156) can be supplied to the 
iner t ia l  sys tem f rom external  sources ,  or  alternatively these var iables  are 
formed as a function of t ime using information on the programmed trajectory 
of the object. 
object follows a preprogrammed trajectory.  

The  simplified expressions (4.158), in  which the t e r m s  (4.156) have been 
omitted, and the use  of external  information o r  programmed trajectory data 
will  substantially change the f i r s t  group of e r r o r  equations (4.35) of the 
iner t ia l  sys tem.  

If the t e r m s  (4.156) are ent i re ly  omitted f rom the ideal operation equa- 
tions, i.e., when Eqs .  (4.158) are adopted, Eqs. (4.35) acquire  on the right 
equivalent acce lerometer  e r r o r s  A&, A&,a, which are equal to the right-hand 
s ides  of Eqs.  (4.156) taken with minus sign. If, however, the expressions 
(4.1 56) are formed approximately, the equivalent acce lerometer  e r r o r s  are 
equal to differences between the approximate and the t rue  values of these 
quantit ies.  
intr insic  instrumental  e r r o r s  a l so  changes. 

Under cer ta in  conditions a different approach is possible: (4.156) or  

The la t ter  alternative is naturally practicable only if the 

The dependence of the right-hand s ides  of Eqs .  (4.35) on the 
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The left-hand s ides  of Eqs.  (4 .35)  a l so  change in both cases. H e r e  the 
t e r m s  t ~ ,  c ~ :  - rq , \ .% io,, - v , < , b 2  
formed as a function of the’ coordinates  and velocit ies measured  by the 
inertial  sys tem.  Therefore ,  t e r m s  contributed by the variations of these  
expressions drop  oul. f rom the left-hand s ides  of Eqs.  ( 4 . 3 5 )  

the gravitational field, we obtain instead of Cqs.  (4.25) 

in the f i r s t  ~ W O  equations in (4.20) a re  not 

Neglecting, a s  always, the variation of the nonspherical component of 

(4.159) 

Inserting the express ions  fo r  h n , ,  h,, 6 r + ,  hv , ,  f rom (4.261, (4.241, (4.7), 
(4.8), (4.27), (4.12), substituting the var iables  f rom (4.32), and replacing 
Y with t h z ,  and gi.. with - l i , ’ r i ,  we obtain the equations 

(4.160) 

. I  . .  
+ o , ~ x + o , , c ~ x - r r w ,  b l f , + ( r o , , L r W X ~ ’ ) I , ) H I = ” =  

=h,, - i h r , - r h i x \ + - c i r  \ r + o r > A r .  

Together  with Eqs .  (4.30)-(4.44) they consti tute a closed sys t em of error 

Comparison of Eqs .  (4.160) with Eqs .  (4.35) i n  the genera l  case revea ls  
equations fo r  this  case. 

fundamental differences.  For  ;=o,r. =o!.=a+= 0, i.e., f o r  a s ta t ionary 
object, the two s e t s  of equations coincide. Th i s  is understandable, s ince  
for a s ta t ionary object the simplified equations (4.158) are exact.  

A genera l  analysis  of Eqs.  (4.160) can  be  c a r r i e d  out by the methods 
previously applied to  Eqs. (4.35). T h e  following point should be  kept in 
mind, however. 

Eqs. (4.44), (4.42) depend both on  the var iables  bn. 6y and on the var iables  
O r .  A?,.  O1,,. 
c a n  b e  eliminated by inserting f o r  B l r .  in  (4.160) i t s  expression from (4.44) 
and expressing cSx, in t e r m s  of hx and 8,: f r o m  (4.42). 

Fu r the r  simplification of the ideal operation equations, which involves 
omission of the t e r m s  (4.156) or t he i r  formation as a function of t ime, i s  
meaningful only fo r  small ox,. oy,.04, of the o r d e r  of magnitude of the Earth’s  
spin.  The  smal lness  of oxo. a l s o  can be  utilized in  this case for 
simplifying the e r r o r  equations (4.160). 
also be  simplified se?ing that z is general ly  small. 

Eqs .  (4.160) contain the projections e,=, and e, , ,  which in vir tue of 

Eqs.  (4.160) are thus coupled with Eqs .  (4.40). Th i s  coupling 

The  error  equations (4.160) can  
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54.3 .  SIMPLIFICATIONS IN AN INERTIAL SYSTEM 
WHICH MEASURES THE GEOGRAPHICAL COORDINATES 

4.3.1, Exact ideal operation equations. 
E r r o r  equations 

Consider a n  iner t ia l  sys tem which measu res  the geographical coordinates 
I t ,  rp',  i.. 
of the geographical horizon; one of them l ies  in the meridional plane through 
the cur ren t  point of the object and the other  in  the plane of the corresponding 
parallel .  The ideal operation equations of a two-acceIerometer sys tem of 
this kind using a gyrostable platform are Eqs.  (2.26). 
e r r o r  equations, as  we have noted in  2.2.2, a r e  Eqs .  (2.28)' (1.96), (1.97), 

The two acce lerometers  in this sys tem lie in the unperturbed plane 

The corresponding 

( 1 . 1  18). 
These  equations were derived in Chapter 2 f rom the general  equations of 

iner t ia l  navigation in curvi l inear  coordinates. 
we will now derive the ideal operation equations (and the corresponding 
e r r o r  equations) for the par t icular  sys tem being considered. 
proceed along the s a m e  lines as  in the derivation of the analogous equations 
for  orthodromic coordinates. 

Let, as before, 0,5115 be the axes  fixed to the Ear th  ( the ax is  pointing 
along the Ear th ' s  spin axis),  and Ox,yor, the co-moving geographical axes .  
The relative orientation of these axes  is given by the following matr ix  of 
direction cosines: 

A s  in the preceding section, 

W e  will 

y o  Yo 20 
E -s ink -sincp'cosk coscp'cosb 
r) c o s i  -s incp'sinA coscp'sinb 
5 0 cos Q' sin cpJ 

(4.1 61) 

We will now find the projections oxo, oyo. o,, of the absolute angular velocity 
o of the axes  Ox,,y,z, on the corresponding directions. The axes  Oxoyoso 
rotate  in relation to the axes  0,EC with angular velocity (I) - u .  The der i -  
vatives dx,/dt,  dyo/dt,  dz,[dt of the unit vectors  xo, yo, z, in  the axes  O,&$ are  
therefore  written in the fo rm 

(4.162) 

Dot-multiplying the left- and the right-hand s ides  of the second equation 
in  (4.162) by z,, and the third equation by yo, we get 

0," = ux, + 3 . z, = ux, - 3 . yo. (4.163) 
d f  dt 

Similarly, multiplying the third equality in (4.162) by x, or the f i r s t  by zo, 
we get 

0 - uyo +A$. xo= lay, -* . ( 4.1 64) 
YO - dt '0' 
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\there E. 11. : a r e  the unit vectors  along the axes  4 ,  11. :: ( the derivative , / p , / r  
i s  taken in the axes  O,:q:, i.e., assuming ~ i ~ ~ i ~ = ~ t ~ ~ ~ ~ ~ ~ ~ ~ ' , f ~ ~ O ) .  

Inserting (4.166) i n  (1 . i63) ,  Ire get 

(4.167) 

Similarly from (1 161) and Eqs. (4.164), (4.165) w e  get 

u) stn q' = a,,, I~(F ' .  my, ;= (i. +- u) cos q', ozJ = (7. ( 4 .168 )  

Xow we proceed to  de te rmine  the projections v r .  L', zl1 of the absolute 
velocity v of the or ig in  of the axes  O.vny,,z,, on the corresponding unit vec tors ,  
To this end we use  Eqs.  (4.9).  

FIGURE 4.3. 

1,et the point P be at the Ear th ' s  cen ter  0,. The coordinates x$, yf,, 20, 
o f  the point 0, in the axes  Ox,y~,r, are then 

(3.169) 

Eqs. (1.169)  fo r  ~ f ,  and z q  are obtained by passing the meridional section 
of the geoid through the axes y,,. zo (F igu re  4.3) and examining the s i m i l a r  
r ight t r iangles  0,AC and 0.48 (using Eqs. (1.8a). 
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(4.171) 

where 

are the radi i  of curva ture  of the principal normal  sect ions of the sur face  
h = const at the point 0 :  r? is the rad ius  of curva ture  of the meridionalsect ion 
(through the ax is  y,,) and r;! is the rad ius  of curvature  of the perpendicular 
sect ion (through the ax is  x,,). 

According to the fundamental equation of iner t ia l  navigation, the readings 
n,r,s It,. of the acce lerometers  along the axes  xo. yo a re  expressed  in the form 

fl.,, =wx,, f l y ,  = wyo - gy,. (4.175) 

where by (4.8) and (4.173) 

(4.176) U'*  = v\,, + /KO,* ,  - o,,v,,,, 

atv = zvy + <~>z,t~x,- AI*>,,. 1 
W e  have thus der ived all the s tar t ing relat ions needed for the construct ion 

of the ideal operat ion equations. 
obtain the f i r s t  two equations in (2.26). 

Solving Eqs .  (4.175), (4.176) 
From (4.173) and the 
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in l - l . Ib : ) )  :re obtain the third, fourth, and fifth equation in ( 2 . 2 6 ' ) .  F r o m  
l - l . i b 7 )  and the--. f i rs t  -?quality in (4 .1b8 ) ,  we obtain the sixth and the seventh 
r..qu$tion in ( 2 . 2 6 ) .  ?'he eighth and the ninth equation in (2 .261  coincide with 
1 4 . 1 7 4 ) .  
t-quations in ( 2 . 2 U )  to the se t .  

, . \ . i l l  t)c done by taking the variations of the ideal operation equations (2 .26 ' ) .  
is i n  the previous section, we w i l l  consider  only the main instrumental  
+:rrors, namely the z.cceleronieter errors  \n, , \rr  , the gyroplatform drift 
h.. b.. h.., and the a l t imeter  e r r o r  \ h .  

F r o m  the f i r s t  two equations in (2.263,  w e  ha\Fe 

To obtain a closed sys tem,  u e  should fur ther  add the las t  s i x  

[.et u s  now proceed x i t h  a d i rec t  derivation of the error  equations.  This  

x h c r e  the variation ' 1 . ~ .  should be calculated using the las t  three equalit ies 
in ( 2 . 2 6 )  and the first relation in (1.27). 

1. rom the third, fourth, eighth, and ninth relat ions in (2.26), w e  get 

(4.178) 

F'roni the sixth and the seventh equality in (2.26) we obtain the variational 
equations 

hi(=-  &>&, 6 [ ~ ~ . + u , i o s ~ ~ ' I = & l ) " ,  (4.179) 

Finally, f rom the fifth, tenth, eleventh, and twelfth relations in (2.26) 
we get 

(4.180) 

Here  Amr,  AI+, , Amz are the gyro drift components of the s table  platform 
about the corresponding axes;  the angles  a. p. y charac te r ize  the perturbed 
position of theaxes  xyz fixed to the platform relative to the unperturbed 
axes  x,,y,z,,. The mutual orientation of the a x e s  xyz and x,,yoz,, is descr ibed 
by the mat r ix  of direction cosines  (4.22). In accordance with this matrix,  
we obtain for the variations &n,, any$ in Eqs. (4.177) 

(4.18 1) 

In (4.181), Ans2,Any, correspond to acce lerometer  e r r o r s ;  nx,. Ity, are given 
by Eqs. (4.175), (4.176), and n,, is obtained f rom the equality 

n = w  - g .  (4.1 82) Za 6 tr 
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Here  

and 

4.4.1 8 3) 

(4.1 84) 

where the functions g y > ( r +  (p) and gz ( r ,  ip) a r e  given by (1.27).  
Dqs. (4.177)-( 4.180) together LCith Eqs. (4,181)-( 4.183), (4.17 5), (4.176), 

(1.27) constitute a closed sys tem of differential and algebraic equations for 
the e r r o r s  &&'. 6)" in the geographical coordinates. 
these equations a r e  equivalent to IZqs. (2.28), (1.96),  (1.97). 

We will now show that 

Introducing, as in (4.37), new variables  

u1 = - (\I,'.  p2 == hi. ius rf ', yz = b% sin q ' ( 4.1 tl, 4a) 

and using the equalit ies 

= I p 2  tgcp', loz, = w, tgrp', (4.185) 

we obtain f rom Eqs.  (4.179) 

(1, + (0 , y - w2 p ,  = bm 

P, + (I)* (1: - OX,Y2 =&'I),,' 

YL + 13, - ay,u2 = hZ"* 

- ) 2  

which coincide with Eqs .  (4.38).  
In (4.186) and (4.180) we make the substitution 

(4.186) 

H x ,  =r t , -u ,  - O,,=p,- f i ,  U 2 ,  = y - - y .  2 (4.187) 

and obtain equations which differ from Eqs. (1.96) only in that the right-hand 
s ides  contain the equivalent quantities --A(,ix,,, -&Iyu, - A ~ o I ~ ~  instead of t h e  
torques Am,,, Amyu, Amzo. 

W e  will neglect, a s  
before, the variation of the nonspherical gravitation component and products 
of variations with factors  containing e L .  
making the following simplifications in Eqs.  (4.177), (4.178), (4.184): 

Let us  der ive the f i r s t  group of e r r o r  equations. 

This  is c lear ly  equivalent to 

. . .. .. 
I r 2 = r 3 = r .  l t = r ,  h = r .  

(4.188) 

Eqs. (4.177) taken in  conjunction with (4.178) are thus seen  to coincide 
with Eqs. (4.25). 
(4.32) gives Eqs. (4.35) which are equivalent to Eqs .  (2.28). 

They lead to Eqs.  (4.28) and substitution of var iables  

4.3.2. 
geographical coordinates 

Simplifications of the equations for  

The simplifications of the ideal operation equations (2.26) of an  iner t ia l  
sys tem measuring the geographical coordinates a r e  c lear ly  analogous to the 
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simplifications in the case of orthodromic coordinates, t reated in the 
previous section. 
eccentr ic i ty  of the Earth,  the c loseness  of the object to the Ear th ' s  surface,  
the I O K  velocity, e tc .  In the orthodromic case w e  considered one fur ther  
simplification associeted with the proximity of the object t ra jectory to the 
orthodromy plane. 
the plane of the equator. 
readily extended to the present  case. However, the simplifications asso- 
ciated with the motior! of the object near  the equatorial plane are  of no 
significance in practice, s ince c lear ly  the object cannot always be con- 
s t ra ined to move near the equator. 

h '' 50-100 km), the expressions fo r  r?, r ; .  ,o,! and the relat ions among the 
coordinate r ,  and i t ,  q ' in  Eqs.  (2.26) can  be simplified. W e  may take, for 
in.; t anc e, 

R'e can again simplify the equations using the sma l l  

The analog of this plane in geographical coordinates i s  
In principle the resu l t s  of the previous section a l e  

F'or sma l l  altitudes, when h'u is of the s a m e  o r d e r  a s  e' (i .e, ,  for 

(4.189) 

From the last  three equations in  (2.26) and f rom (1.27) w e  obtain a n  
approximate expression for  g!:: 

The last th ree  equations in  (2.26) in  this case drop  out f rom the ideal 

Par t icu lar ly  significant are the simplifications associated with motion 
operation equations. 

over  the sur face  of the Clairaut  ellipsoid, i.e., on the sur face  of the ocean. 
In this case It = 0. 
an  autonomous navigation system. The expressions for  rl, r3. gy, and the 
integrands in the f i r s t  two equations in (2.26) are markedly simplified in 
this case. 

Note that for  motion on the Ear th ' s  sur face  the las t  th ree  equations in 
(2.26) can be ent i re ly  eliminated f rom the ideal operation equations. Indeed, 

The a l t imeter  becomes superfluous and w e  end up with 

consider  the sum 

- o,>o*, + g,. 
which en ters  the integrand in the second equation in (2.26) 

vX,= rmv,. O ~ , = ( ~ . + U ) C O S ~ ' .  

mZ, = (i + ~jsincp',  

we have 

- o ~ ; o ~ ~ + ~ ~ . = -  r,ii.+u)2sin$cos.pr, 

Since the Clairaut  ellipsoid i s  a level surface,  we have 

(4.191) 

Since 

(4.1 92) 

(4.193) 

( 4.1 94) 
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so  that 

- wr,,mz0 + g ,  = - r , i  (1. + Z U )  sin (p‘ cos 9’. ( 4.195) 

The product wy,oz, entering the f i r s t  equation in ( 2 . 2 6 )  can be written in 
the form 

w,.,ol,= r&’(X +-usincp’). (4.196) 

For low speeds (e.g., a s ea  vessel), when ~ ~ 2 ) ~ ~ .  -vxooz,+~gyo a r e  small ,  
r 2 ,  r., can be replaced with a and 
L[‘ and (p’u. 

and kl can be ignored in comparison to 
We thus get 

- vxux,wz, + 8, = - 2auX sinrp‘ cosrp’, 

V ~ , W ~ ~ =  auv’ sincp. 
(4.1 97) 

The ideal operation equations in the case  of slow motion on the  Ear th’s  
surface thus take the form 

I 

v = 1 (nx, + aip’u sin q’) d t  -+ e, 
v Y =  ( (ny~-2acrur is inc l”cosrp ’ )c i t+v~;  

1 ’  . 
U 

I 

,, 

I (4.198) 

J M’; = H20xo. M:  = H,(j>yn+ M: = - H3u2,; 
= oy, tg rpl. 

For sufficiently low velocities, the t e r m s  nu$ sinrp‘. 2au~sinrp’  cosrp’ in the 
integrands may prove to be quite negligible or, alternatively, they can be 
formed from approximate values of the coordinates. 
the factor  e2 in the expressions for  ax@, wy, can be t reated s imilar ly .  

In view of the obvious s imi la r i ty  between the cases  of orthodromic and 
geographical coordinates, we w i l l  not go into this problem in any g rea t e r  
detail.  
simplified and the exact relations, a s  in the previous section in the 
discussion of orthodromic coordinates. 

The t e rms  containing 

The corresponding equivalent e r r o r s  can be found by comparing the 

§4.4. DETERMINATION OF ORTHODROMIC 
COORDINATES WITH ACCELEROMETERS ORIENTED 
IN THE PLANE OF THE GEOGRAPHICAL HORIZON 

An inertial  sys tem whose unperturbed platform axes x, y. z coincide with 
the corresponding axes of the co-moving geographical trihedron and which 
measures  the geographical latitude and longitude has cer ta in  obvious 
advantages compared to other navigation sys tems.  
naturally l ies  in the fact that the geographical coordinates a r e  commonly 

The main advantage 
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used in a l l  f ie lds .  
systeni a r e  relatively s imple.  Last ,  i t  is also significant that the platform 

a s i s  of t h i s  sys t em points along the normal  to the level ellipsoid, and the 
i: a s i s  l ies  in the plane of the geographical meridian.  This,  in particular,  
s imp l i f i e s  the initial sett ing and adjustment of the system, s ince the ax i s  2,: 
can be initially set by a plumb line using acce le romete r  s ignals  and the 
asis ::,, can be brought to i t s  proper  meridional position w i t h  the aid of the 
sys t em gyroscopes,  using the gyrocompass effect. The I.. ax i s  caged to 
t h e  normal  of the level ellipsoid a l s o  simplifies the utilization of the al t i -  
me te r  readings h .  

poles, and t h e  inertial  sys t em therefore  cannot function u-ith sat isfactory 
accuracy near  the poles. 

An inertial  sys t em measuring the orthodromic coordinates is free from 
t h i s  shortcoming. 
always can  be chosen so that the object move Rear the plane : = 0, i.e., in 
the immediate neighbcprhood of the pole of the orthodromic gr id .  Now, the 
orthodromic coordinates a r e  spherical  coordinates.  The  axis  z,, of the 
platform should therefore  point along the radius-vector r .  This  somewhat 
complicates the initial sett ing and adjustment of the platform. 

In our discussion of the simplified ideal operation equations of a n  ortho- 
dromic system, w e  have shown that this shortcoming can be eliminated in 
the c a s e  of low speeds.  
(4.72) with Eqs. (4.149) and add the t e r m s  A S  and 11 f rom (4.152) to the 
right-hand s i d e s  of the fifth and the sixth equation in (4.72), while writing 
f o r  u ) ~ .  w Z ,  in the l a s t  equation in ( 4 . 7 2 )  or,+A.o)x,. w~~-!-AioY:, o , ,+h ,~ ,where  
hxy. h y o ~ ' A w z o  are def imd by (4.153).  Then i f  the axis  2,) i s  initially oriented 
by the plumb line (along the normal  to the level ellipsoid), it will p re se rve  
this attitude at any time, the orientation e r r o r s  depending on the velocity of 
motion relat ive to the Earth.  Th i s  approach, a s  we have seen  in 4.2.5, i s  
applicable to speeds comparable  with the per ipheral  velocity on the equator.  
A t  velocities of the order of 1000m/sec ,  however, it may lead to substantial  
e r r o r s  (posit ion e r r o r s  - 2.5 km, orientation e r r o r s  - 1'.4). 

Still 
working with the orthodromic coordinates z and S, we change the unper- 
turbed orientation of the axes .rqjy,)z0 fixed to the platform so that the .q, axis  
is directed along the no rma l  to the level ellipsoid while the x,, axis  lies in a 
plane paral le l  to the oi-thodromy plane z = 0. 

The  unit vectors  x,~, yo, zo of the axes  xoj:,zo a r e  given by 

L'Lrther, the ideal operation equations of t h e  inertial  

IIowever, the geog-aphical coordinate g r id  degenerates  a t  t h e  Ea r th ' s  

The polar ax i s  :' of the orthodromic trihedron iq':' 

It suffices to replace the f i r s t  t w o  equations in 

T h e r e  is another approach which pe rmi t s  bypassing this difficulty. 

(4.1 99) 

Here  the vector z1 .s the unit vector of the normal  to the level ellipsoid, 
i' is the unit vector of the polar ax i s  of the orthodromic f r a m e  OL:'tl'y. 

Let Ox,yJt, be the ccb-moving orthodromic axes.  
the axes  x,. j:,,, zoI defined by (4.199), re la t ive to the axes  x,,  y,, z, are 
a r r anged  in the ma t r ix  

The direction cosines  of 

&3 k 20 

Y, SZI v?? siw 
2 3  Y i l  Ya T%. 

(4.2 00) 1 3  TI1 v l 2  TI3 
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The orientation of the axis  zo (normal  to the Clairaut  ellipsoid) re la t ive 
to the axes E, 1. j rigidly fixed to the Ea r th  is specified by the third column 
in (4.161). The orientation of the axes  x3,  y3. zJ re lat ive to the axes  k, q. 6 is 
determined by mat r ices  (4.1) and (1.16). From these data we readi ly  obtain 
the elements  of the third column of the mat r ix  (4.200). 
manipulations, using the identit ies 

After obvious 

sing' =sin(q' -q) cosrp + cos(g' - 9) sing. 
cos~'=cos(g'-g)cos~-ssln(cp'-qcp)sincp, 

(4.201) 

identities (4.3) and the orthogonality of ma t r i ces  (4.1), (1.16), (4.161), w e  
obtain the corresponding expressions for  the elements  y13 of the third 

y33= cos (cp' - q). 
Now f rom the second equality in (4.199) 

x (- p,, s in  z cos s - 
sin z sin (rp' - 'p) 

sin (<Go) cos 'p 

s in  z cos s + 8% cos z ) ]  , 

v21 = (-- 031 sin S + pa cos S) ,  

Finally, f rom the third equality in (4.199) 
1 

sin (5'. zo) 
v12= - A x 

1 sin (rp' - rp) cos (C?--+) 
cos 'p 

Yn = 7 [cos z - 
sin (c?z0) 

(4.202) 

(4 203) 

(4.204) 

In (4.203), (4.204) the angle (&Go) is given by the equality 

/-. 
cos (it, 2,) = 6' . z, =sin z cos (9' - 9) + 
+ cos 'p (- sin z cos S - 832 sin z s ins  +pscos z). (4.205) 

cos z sln ('p' - rp) 

Let p,, p,. p ,  be the projections on the axes  x,, yo. z, of the angular 
velocity of ~n,y,z, re la t ive to ox,y,z,. Using relat ions s imi l a r  to (4.163), 
(4.165). we find 

(4.206) t P ,  = Y12Y13 + Y22V2, + YsYgs 

Pz, = YI1Y12 + Y21vn + iSlV32. 

Py, = i13yll f +BY21 f YSY2.1. 
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1.2. DE‘ ER‘. INATIOV OF C,RTHOI)ROh!IC COORDINATES 

Since the expressions f o r  the projections ax,, my,. oz, of the absolute 
angular  velocity of the axes  Ox,y,z, on the corresponding unit vectors  are  
known ( they a re  given by (4.15)), w e  can  find the absolute angular velocity 
components of the axes  Ox,yoz,, in  the corresponding directions.  They  are  
given by 

(4.207) ! @=, = P v ,  + @*,YI1 + @yy21 + @z,Y31. 

4’y. = P ,  + @x,Y]. 4- @y>L2 + @,,Y,*. 
@,, = P, + @*,YI1 + *,,)’?3 + %,YS ’ 

Our  fur ther  cour se  of action i s  as follows: using (1.9) we should find a 
relation between the absolute velocity components P,, vy,  of the or igin of the 
axes  Ox,p,z, and the a n g i l a r  velocity components u+, oyer and a l s o  a relat ion 
between and C O , ~ ; ~ ~ J ~ , .  Given these relations,  we will be  ab le  to solve ou r  
problem, namely to construct  a c losed sys t em of exact ideal operation 
equations fo r  a n  iner t ia l  sys t em with the a x e s  z, of the platform pointing 
along the normal  to the level ellipsoid which measu res  the or thodromic 
coordinates  z and S .  

part icular  case: the or:hodromic axes  j’, q’ l i e  in  the plane of the meridian, 
the a x i s  q’ pointing along the Earth’s  spin axis,  i.e., the a x i s  ;. 

To simplify the mathematics ,  we will only cons ider  a highly important 

The  fac tors  &i enter ing Eqs.  (4.202)-(4.204) are  then given by 

&> = 1 .  p,, = O B  = 0. (4.208) 

Eqs. (4.202)-(4.204) also include the trigonometric functions s i n  iq‘--q), 
cos(q’-q). 
e:, we obtain 

If they a re  expanded in  powers of e ,  retaining only t e r m s  with 

sin(g’ - q )  = e* sin q COST. cos icb’ -q) = I .  (4.209) 

From the third equal.ion i n  (4.3), using (4.208), we get  

s i n q  = cos z sin S. (4.210) 

Inserting (4.208)-(4.210) i n  (4.202)-(4.204), we obtain the greatly 
simplified relat ions 

yl,= 1. y, ,=-e*sintsinScosS.  
y I ,  = e*cos z sin S c o s S .  
y2, = e2sin z sin S cos S. 
y, ,=-~*s inrcoszs in’S .  
y,. , -  - - ezcos z sin S c o s S ,  
ys! = @sin z cos z sin’s, 
IJU = 1 ’ 

yz = 1, 

w e  now have ( to  t e r m s  of the o r d e r  e’) For P,. P,. P, 

p =+,=e2[t(cos2z -sin2z)+ 2SsinzcoszsinScosSj. 

p ,  = GI3 = e2 [- i s in  z sin scos S+ S cos z ( C O S ~ S  - sin2S)j. 

PI, = y2, = ~2 [i cos x sin s COSS + Ssin t (cos* S - sin2S) J. 

5 

(4.211) 

(4.212) 
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F r o m  (4.15), (4.208) we have 

(4.213) 
OX, = - i + u COSS, 6),,, = S c o s  z - u  sin z sin S.  

mzl=Ssinz +ucoszsinS. 

Inserting (4.213). (4.212), (4.211) in  (4.207), we get 

6 ) ~ ,  = - + U COS s + 
+.e?sinS[ ;s inS(cos*r -ss in2~)+  

+ cos S sin z cos z - u sln S cos SI. 
(4.214) 

Let us establish a relat ion between wx,. wY,, and mX., my,. W e  will u se  
The  point P is the Ear th ' s  center  O,, and i ts  coordinates in the Eqs. (4.9). 

axes  Ux3y,z3 are 

X?' = )I$ = 0, zo, = - r .  ( 4.2 1 5) 

Since the mutual orientation of the axes  x3y3z, and xoyoz, is descr ibed by 
the direction cosines  (4.200), (4.211), and the two sys tems have a common 
origin, thecoordinates x f ~ ,  y,Oj, x$n of the Ear th ' s  center  0, are given by 

(4.2 16) 
x$ = re2 cos z sin S cos S. 

y,Ol =-re2sinzcoszsin2S. z $ = - r .  

For r we can  use  the approximate expression 

r = a (1 - $ sinlv)  + h .  (4.2 17) 

Taking h/u to be of the same o rde r  of magnitude as e* ,  we obtain from 
(4.216) 

I 
X$ = ae2 cos z sin S cos S .  
$1 = - ae'sin z cos z sin2S, 

zf '  = - a ( 1  - f sin2cp) - h.  

Expressing sin'q from (4.210), we inser t  expressions (4.218) for 
Since 0, is s ta t ionary in  the axes O&g, we have x,O,. y,Os, z,Ol in  (4.9). 

and Eqs. (4.9) yield 

I ue2 $ (cos I sin s cos S )  + 
f w x .  - uov,( 1 - $ cos2z si$S+ f )  + 

+ ue2wz, s in  z cos z sinz S = 0, 

4.218) 

4.219) 

(4.220) 



- ne?-$ (sinrcos rsin2S) + 
+ t*) + n e h ,  cos z s in  S c o s  S + 

+ o v ) t  1 1  - T c o s 2 r s i n ' ~ + T ) = ~ .  e J  h 

- u - $ ( ~  -TcCos2zsin'S+a)+ e- h *  

+ vZ. - n e b x  s in  z cos i sin2 S - 
- a r b ,  cos i sin S cos S = 0. 

14.220) 

Carry ing  out  the differentiation in the third equation in (4.220) and 
inserting wx, and oy f rom (4.214), w e  find 

Vz =h .  (4.221) 

The  f i r s t  two equations in (4.220) af te r  differentiation and inser t ion for s 
and z of the i r  express ions  f rom the f i r s t  and second equalitj- in 14.214) yield 

Solving f o r  O I ~  and w , ,  we obtain 

h I 
oy = 1' f i - ;+e? cos? rsin2S)j-  2 e2sin z s ins  cos.7, 1 

E'rom the second and third equations in  (4.2141, eliminating 3 ,  w e  obtain 
a relation between oz and oy: 

t3: =a; t g t ( i  - e?s in?S)+  *[I + e ' c c o s ? ~ - s i n z ~ s i n ? ~ , l  (4.224) _. 
In what follows w e  will r equ i r e  the cos ines  of the angles  between the axes  

x.,, y,, and the co-moving geographical axis y,. They are needed in calculations 
of the x,, and y,, projections of the horizontal gravitation component. Since 
this  horizontal component is of the o r d e r  e ? ,  we may wr i t e  

(4.225) 

Turning to 

r. n n n 
cost x,. y*) = costx,. y,). cOs(y0. yJ =cos().,. y,), 

where yl i s  the north ax is  of the co-moving geocentr ic  sys t em.  
Eqs.  (1.20) and using (1.208), we obtain 

(4.226) 

Retaining 

sin I sin S /-. C h i  s n 
cos cx,. y2) = 7 - cos (y(,, yi) = - 7 . ct2, 9 ' \ 0 5  <c 

The express ion  for  is given by the f i r s t  equation in  (1.30). 
only t e r m s  of the o r d e r  e 2 ,  we obtain 

gvl = A& 2 sin ?q, (4.227) 
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Now, using (4.210), (4.225), we obtain fo r  the xu and yo projections of 
gravitational acceleration 

I gxs = cos z s i n  ZS, 

We have thus assembled  a l l  the relations needed for  the derivation of 

The ideal operation equations will f i r s t  include the equations for TJ+,  TI^,, 

the ideal operation equations. 

analogous to the f i r s t  two equations in (4.26): 

(4 .229)  

To these equations we add (4.223), (4.224), which can beused  to determine 
oxo, oy,. azo f rom known ex0, vy,: 

Then come the equations for  S and z using known axe, oy,. They a r e  
obtained f rom the f i r s t  two equations in (4.213) and have the form 

0 
L (4.231) 

0 

z = j I - o o , , + u  cosS+ e2(-wo,,sin2Scos2z +o,,sinzsinZS)jdt+ zo, 

S=J" (my. [ I  - ez(cos2S - sin2S cos2 z)  1  + u sin z s i n s )  dt +SO. cos 2 

Finally the ideal operation equations include, as is usual, suitable 
relations f rom which the control torques can  be formed: 

M: = - Hzwxo. M: = Hlo, ,  M", = - H,o,,. (4.232) 

They 
can  be derived in  the s a m e  way a s  for the sys tems discussed in the previous 
sections.  

the simplifications (4.189), (4.190). 
which cor responds  to motion in the plane of the geographical meridian, and 
s imilar ly  assume meridional motion in Eqs.  (2.26),  we readily see that 
Eqs.  (2.26) with simplifications (4.189), (4.190) are equivalent t oEqs .  (4.229)- 
(4.232). 

The e r r o r  equations of this sys t em a r e  Eqs.  (2.28), (1.96), (1.97). 

In conclusion, let  u s  compare  Eqs.  (4.229)-(4.232) with 
If we take z = 0 in  Eqs. (4.229)-(4.232), 

To establish this equivalence, i t  suffices to note that the axes  X&JZO 
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in the two sys t ems  milke a n  angle of .7/2 with each o ther .  The variable z 
i n  Z q S .  (4.229)- (4.233) therefore  cor responds  to the longitude i. in 
i;qs. (2.261, and the var i ib le  S corresponds  to the geocentr ic  latitude q, 
which is re la ted  to  the geographical latitude y '  by 

One fur ther  point should be r emembered .  Eqs. (4.229)-(4.232) were  
derived under assumption (4.208), i.e., for the c a s e  when the orthodromic 
polar  ax is  lies in  the plane of the t e r r e s t r i a l  equator. This  res t r ic t ion  
obviously can  be removed. The  resulting equations, however, become 
more  complex. But if the computing devices of the iner t ia l  sys t em 
can  function both according to Eqs. (2.26) and according to Eqs.  (4.229)- 
14.232), the two al ternat ives  are  sufficient to keep the object moving in any 

t ra jectory.  At low latitudes, when q < 2, we should use  Eqs.  (2.26), and 

at  high latitudes, wher c lear ly  t <  $, we should u s e  Eqs.  (4.229)-(4.232). 
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INERTIAL  SYSTEMS WITH DOPPLER CORRECTION 

55.1. ASYMPTOTIC STABILITY OF INERTIAL 
SYSTEMS. VELOCITY E R R O R S  

In the previous three chapters  we have considered inertial  sys t ems  with 
al t imeter  correct ion.  We have shown, in par t icular ,  that external  informa- 
tion on the altitude h of the object above the Ea r th ' s  sur face  ensures  non- 
asymptotic stability of the inertial  sys tem for  any motion at constant 
distance from the Ea r th ' s  center  and for Keplerian motion. 

In one type of 
sys tems all  the three acce lerometers  a r e  retained and the external  informa- 
tion on h i s  applied only to form the gravitational t e rm p/r3 in the ideal 
operation equations. 
this ca se  takes the fo rm 

The information on the altitude 11 can be used in two ways. 

The homogeneous e r r o r  equation of the f i r s t  group in 

(5.1) 
d i  Or p fir 7 + 7 = o .  

The corresponding sca l a r  equations in projection on the axes x y z ,  with 
the z axis  directed along the rad ius  vector r ,  a r e  

a; + (f --a; - a:) ax $- ( W p Y  - iq ay - 

oj; + ($- - 0: - u;) ay -+ ( a y W l  - Ax) az - 

6; + (f - -0; - W;) az + ppX - kY)ax - 

- 2(0= 64 + ~ W x ~ ,  + G y )  az + 20,b.i = 0, 

- 2 ~ ,  a i  + (w,,w, + A,) ax + 20, a i  = 0, 

- 2sy ox + (WsWy + J,) oy + 20,6Y = 0. 

In the other alternative, the z axis  acce lerometer  is dispensed with and 
the f i rs t -group homogeneous e r r o r  equations take the form 

I a i  + ( JL r3 - 0 2  Y - w:) ax + (W~W,-;J 6 y - z ~ ~  a$ = 0. 

oj; +( f -~ ;  -d x )  a)#+ ( X Y  O W  -tj l)ax+2~,&=0. 

W e  have shown in Chapter 2 that the solutions of Eqs .  (5.2), (5.3) in cases 
when the i r  coefficients a r e  constant constitute undamped oscillations. In the 
s implest  ca se  when r = const, ox = my = W, = 0, these a r e  harmonic oscillations 

(5.2) 

(5.3) 
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with Schuler’s frequency. We a r e  thus dealing with a case  of nonasymptotic 
stability. 
plishing asymptotically s table  motion of the inertial  systemabout  the position 
specified by the ideal operation equations. This  problem c lear ly  can be 
solved by introducing t e r m s  proportional to &, by’, 6; in Eqs.  (5.2), ( 5 . 3 ) .  

Eqs .  (5.2), ( 5 . 3 )  a r e  the var ia t ianal  fo rms  of the corresponding ideal 
operation equations. Therefore ,  t e r m s  proportional to 6;. a i ,  6; can be 
introduced in  Eqs. (5.2), (5.3) if  we appropriately a l te r  the ideal operation 
equations; in other  words, we should introduce in the ideal operation 
equations additional t e r m s  whose variations a r e  proportional to ax. by. 6; .  

them as follows ( kl  = const): * 

The next s:ep to consider i s  naturally the possibility of accom- 

Turning to the f i r s t  group of ideal operation equations ( 1 . 3 6 )  w e  change 

0‘= I ( n - m Y v ‘ 4 - g - k 1 v ‘ )  dt -a”. r ’ = ! ’ ( d - m X r ’ ) d t + , . O .  (5.4) 
I > 

Let the sys tem be composed of ideal elements,  without any instrumental  

Then from (5.4), ( 1 . 3 6 ) ,  instead of Eq. (5.11, 
e r r o r s .  The function r ( t t  used to form the magnitude of the vector g i s  
assumed to be exactly known. 
w e  obtain a new vector equation for  the e r r o r  6 r = r ’ - r :  

Project ing this equation on the axes  xyz with the z axis  directed along r ,  w e  
obtain instead of (5.2) 

(5 .6)  

F o r  a two-accelerometer sys tem we correspondingly obtain instead of 
Eqs. (5.3) 

ax+ k ,  6; + (f - wL; - 0:) 6x + 
- ! - ( ~ p , - 0 ~ - k 1 o , ) 6 y -  2wZ6y=-  k,ro, .  (5.7) 

6 i +  k ,  a i +  ($--a: -*)by + 
+ (op, + GZ + k l o J  bx + 20,b; = k l r o ,  

Let us  now consider  the homogeneous equations (5.5)-(5.7). The solutions 
of the homogeneous equations (5.5), (5.6), a s  i t  follows from the form of 

* Eqs. (5.4) contain u‘and r ’ ( a s  dtnlnct from u and f ) ,  smcewkntheidealoperanonequatiomarechangedin 
accordance w i t h  (5.4), r’ # r and e’ += u even in the abseire of instrumental ermrs and k tth exact initial 
condiuons (see (5.5)). 
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Eq. (5.5), a r e  damped oscillations. The vector  b r ,  and hence A x .  b y ,  OZ in 
the homogeneous equations (5.6) f o r  k, > 0,  r =cons t ,  go to zero with t ime 
i r respec t ive  of the par t icular  variation of a+, coy. iD1. The situation i s  some- 
what different a s  r ega rd  the solutions 6 x ,  by of the homogeneous equations 
(5.7). These may be damped oscillations or,  conversely, oscillations which 
grow with t ime depending on the par t icular  relationship between k,. i o r ,  o,,. mz; 
in c a s e  of variable a,, wyl a,, the charac te r  of the solution fur ther  depends on 
the par t icular  form of the functions o,(t), coy(t), az(t). 

F o r  ax=oy=ox= 0,  r = c o n s t ,  the solutions of Eqs.  (5.7) evidently go to 
ze ro  with time. F o r  ax= a,=O, wy=const,  r =cons t ,  i.e., fo r  motion with 
constant velocity along the grea t  c i r c l e  of a sphere  centered a t  0, which does 
not spin with the Earth,  Eqs .  (5.7) a r e  separated,  and for k, > 0 the solution 
is damped if 

For motion with constant velocity along a paral le l  (taking the axis  y to lie 
in the plane of the meridian) ,  we have 

0, = 0,  oy = const, w, = const, r = const. (5.9) 

The coefficients of the homogeneous equations (5.7) in this ca se  are 

The charac te r i s t ic  equation of (5.7) is 
constant, so  that Hurwitzls c r i te r ion  is applicable to stability analysis .  

~ ~ + 2 k , ~ ~ + p ; + 2 a ; - $  + k ~ p 2 +  

+ k ,  (20;  + 20: - o2 y ) p +  (3-o”,-0:)(0~-oO:)+k:O:=o. (5.10) 

The Hurwitz inequalities give the following conditions of asymptotic 
stability: 

(5.1 1) i k, > 0,  2 3 +  20: + 2k: - 0‘: > 0, 
( 8 4  + 2K3 ( 2 0 ;  - 0;) +a; > 0, 

(Wi - 0; - 0:) (3 - 0:) + k:O: > 0. 

In the region of the parameters  k,, o;, 0: where inequalities (5.11) are 
satisfied, the homogeneous equations (5.7) have a damped solution. 

Let u s  compare regions (5.1 1) of asymptotic stability of the homogeneous 
equations (5.7) with the regions of nonasymptotic stability of the homogeneous 
equations (5.3) to which Eqs.  (5.7) reduce for  k, = 0. The conditions of non- 
asymptotic stabil i ty of Eqs.  (5.3) a r e  inequalities (2.45). 
nonasymptotic stability in the w?,, plane a r e  shown in F igure  5.1. Clear ly  
for  k , = O  conditions (5.11) reduce to conditions (2.45). 
continuity for  sufficiently sma l l  k ,  the regions of nonasymptotic stability in 
F igure  2.1 develop into regions of asymptotic stability of the homogeneous 
equations (5.7). 
(F igu re  2.1) does not contract .  

The regions of 

Thus, in vir tue of 

It is a l so  readi ly  seen  that a s  k ,  i nc reases  region 1 
This  is so because for 

00‘- a; - 0: > 0 (5.12) 

conditions (5.11) a r e  sat isf ied for  any k , > O .  
sat isf ied for any kl > 0 in the half-s t r ip  o? > 02. a?, < 2 0 4 .  

Conditions (5.11) a r e  a l so  
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FIGURE 5.1. 

In general  the second inequality in (5.11) i s  sat isf ied when the third and 
the fourth inequalities a r e  observed. 
plane into three  regions (F igure  5.1). 
is the hyperbola 1 (only one branch is shown in the figure) 

The  third inequality divides the to;. W: 

The boundary curve  of these reg ions  

(5.13) 

The asymptotes  of this hyperbola a r e  the l ines 

The inequality ( 8 ~ :  -+ 2 k f ) ( 2 4  - 0;) -k 6); > 0 corresponds  to the region 
between the two branches of the hyperbola, and s ince one of the branches 
l ies  ent i re ly  in the lower halfplane" at< 0, we a r e  in fact left with the 
region between the branch 1 and the l ines 05 = 0, c$ = 0. 

The fourth inequality in (5.1 1) cor responds  to the hyperbola 2 

(5.15) 
I , ,  

foe =Id- - "; + k W / ( W ~  - y o  1 2  %I* 
" 

with the asymptotes  

(5.1 6 )  - k' + ~1 - gL - 0 2  = 0, (37 = o)z 1 0 y r  . ',' 

One of the branches of hyperbola (5.15) l i es  in the halfplane* 02, < 0, the 
o ther  in the halfplane (1; > 0. 
axis  <+( = O  a t  the point W:=U);) and mee t s  the hyperbola (5.13) a t  a point with 
absc issa  0; ,<4w;i. 
equations (5.7) for  k ,  > 0 is diagonally hatched in F igure  5.1. For purposes  
of comparison the dashed l ines m a r k  the boundaries of the region of non- 
asymptotic stabil i ty of Eqs. (5.3). For k ,  = 0 the two regions natural ly  
coincide. F o r  k ,  +GC, the stabil i ty region is the s t r i p  wf < '20$ ut > 0. 
* Clearly only the f im  quadrant c f the a$, 0: plane is physically meaningful. 

The "physical" branch c r o s s e s  the absc i s sa  

The region of asymptotic stabil i ty of the homogeneous 

The partsofthe hyperbolas (5.14),(5.16) whtch:ie inthe halfplanes 0: < 0,  a i  < 0 are introdwed only to 
elucidate the geometry of Figur? 3.1. This was also the object of continuing the line k! +a: - - ai - 0 
into the halfplane w: c a. 
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Thus, having changed the ideal operation equations in accordance with 
(5.4), we managed to  introduce damping in the f i r s t  group of e r r o r  equations. 
This  was accomplished, however, a t  the expense of introducing additional 
velocity-proportional perturbations in the right-hand s ides  of the e r r o r  
equations (5.5)-(5.7). 
e r r o r s  of the system. 
damping of the Schuler pendulum considered in Chapter 3 .  

Let u s  es t imate  the magnitude of these velocity e r r o r s .  
equatorial motion. 
Then cor =w,. = 0, (9) = const. Eqs.  (5 .7)  a r e  separated.  The f i r s t  equation 
takes the form 

(5.17) 

These perturbations constitute the so-called velocity 
The situation h e r e  is entirely analogous to the 

Consider 
Let the x axis  of the system s p r  point along theequator.  

. ,  
,'xi. 4- kr JX $- (4 bx =I - klro,. 

If idy = const, the steady-state velocity e r r o r  i s  

(5.18) 

To ensure effective ("noticeable") damping, k ,  should be of the o r d e r  of 
I!),,; if w e  take k , = w o ,  w e  get 

(5.19) 

For an object stationary relative to the Earth,  when i9iy1iqi,,- 1/ 16, 

To maintain the desired accuracy of the damped iner t ia l  system, these 

is 
thus of the o r d e r  of 400 km, which is clear ly  inadmissible.  

velocity e r r o r s  should be eliminated. 
information on the magnitude and the direction of the absolute velocity of the 
object. 
velocity meter ,  which measu res  the velocity of the object relative to the 
Earth.  
accuracy, the Doppler m e t e r  readings plus the transportation velocity 
due to the Ea r th ' s  spin give the absolute velocity needed for  guidance 
purposes.  

guidance information on the relative velocity ( this  presupposes knowledge of 
t h e  s e a  current  velocities). 

Before proceeding with a discussion of correct ion using Doppler velocity 
m e t e r s  (or logs), i t  is worthwhile considering one further possibility which 
a r i s e s  in this context. 

This  c lear ly  r equ i r e s  additional 

One of the possible sou rces  of this aiding information i s  a Doppler 

Since the angular velocity of the Earth 's  rotation i s  known to high 

For sea  vessels ,  a normal  log can be used as a sou rce  of external  

Let us change the ideal operation equations (1.36) as follows: 

We  ignore the accelerometer  errors and the e r r o r s  of the gyroscopic 
absolute angular velocity me te r s .  Let fur ther  the axes  xyz fixed to the 
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iner t ia l  platform be maintained in an invariable attitude with the ax is  z 
caged to r .  This  can be accomplished, say,  by using suitable gravimetr ic  
a r rangements  with accelerometers .*  In this c a s e  the coordinates determined 
by the iner t ia l  sys tem f rom the solutions of Eqs.  (5.20) a r e  not used for  
orienting the platform z axis along the radius-vector r .  The e r r o r  
equations (5.6) a r e  now replaced by 

6X + kl  6x’+ (5 - 0; - u:) 6x + 

6Y+k,ai+(+o:-uo:)6Y+ 

6 % + k , d i  +(+a;- 0? Y) 6% + 

+ (u,uy - k )  - 20,6Y + 
+ (OXOZ + &”) 6% + 20,62 = 0, 

+ (OYO, - 6,) 6% - 20 ,  a t  + 
+ (uyw, +I&) 6x + 20,6.i = 0, 

+ (Ozur - &J 6x - 2uy6X + 
+ (u,oY -+ 6,) by + 2 0 ~ 6 ;  = - k,i. 

If r is exactly known, Eqs.  (5.7) can be replaced by 

(5.21) 

The s t ruc ture  of the left-hand s ides  of Eqs.  (5.21), (5.22) i s  somewhat 
different f rom the left-hand s ides  of Eqs.  (5.6), (5.7). However, Eqs.(5.21), 
(5.22), like Eqs.  (5.6), (5.7), contain the damping t e r m s  k,&. k,6j* .  k,&. At 
the s a m e  time, the right-hand s ides  of Eqs.  (5.22) a r e  zero,  so that there  
a r e  no velocity e r r o r s .  Velocity e r r o r s  in Eqs.  (5.21) a r e  entirely attr ibu- 
table to the ver t ical  velocity component r’ of the object and therefore  do not 
a r i s e  for  r = const. 

eliminated without using additional information on the velocity of the object, 
anyhow without any information on i ts  horizontal component. 
however, this i s  not so. 
stabilization caging the i axis  of t h e  platform to r and postulated ideal 
gyroscopic angular velocity m e t e r s .  
knowledge of w,, w y ,  and hence (seeing that r is known) knowledge of the 
horizontal  components of the absolute velocity ux = T u y .  t i y  = - ru, . 
in fact did use addition.31 information on the velocity, although cnis informa- 
tion was provided only by iner t ia l  elements (not to speak about r ) .  

At a f i r s t  glance it would seem that the velocity e r r o r s  have been 

In fact, 
Remember that we  assumed g r a v i x e t r i c  attitude 

Now this implies f rom the s t a r t  

W e  thus 

§ 5.2. 
VELOCITY METERS 

BASIC INFORMATION ON DOPPLER 

The principle of the Doppler velocity me te r  is naturally the Doppler effect. 
W e  will briefly recapitulate the elementary theory of this effect here .  

See my “Theory of Inertial Navigation: Autonomous Systems.“ - Nauka. 1966. 
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A source of electromagnetic waves is situated a t  point A (F igu re  5.2). 
A detector which receives  waves reflected f rom the plane I I ~ . V  i s  si tuated at 
the s a m e  point. Suppose the point A moves with velocity V relative to the 
plane !V.V, the direction of V being normal  to the reflecting plane. 
emitted signal can be writ ten in the form 

The 

where i s  the radian frequency of the radiated signal. 
The detected signal is then writ ten in the form 

' J 
2 - 1 \. 

(5 .24)  

where V i s  the speed of the point A .  I" the initial distance f rom A to the 
plane N.V ,  c the velocity of light 

--I N 

FIGURE 5.2. FIGURE 5 . 3 .  

If o is the radian frequency of the radiated signal, the radian frequency 
of the detected signal i s  

(5.25) 

The Doppler frequency shift is given by 

1 (5.26) 2t,) v, 
AUl = (0' - 1,) = - 

C 

i.e., the Doppler frequency shift i s  proportional to the speed V of the point 
re la t ive to the reflecting plane. 

the E a r t h ' s  surface f rom a moving object.':; Indeed, suppose a packet of 
electromagnetic waves is beamed f rom point A (F igu re  5 . 3 )  in the direction 
A B .  After reflection a t  point H of the Ea r th ' s  surface,  the wave packet is 

See, e.g.. V ~ n n l t  > k l  i ,  A . S .  Ocherk osnov radiolokatsii pri nepreryvnonl izluchenii radiovolon (Continuous 

A s imi l a r  relation i s  applicable to a tight beam of radiation directed at 

Radar Techniques).-Sovetskoe Radio. 1961; A s  t a f 'e v, G .  P., V.S.S he bs h a e  v i c  h ,  and Yu. A.  Y u I k o v  . 
Kddionavigatsionnye ustroistva i sisteiny (Radio Navigation Systems). - Sovetskoe Radio. 1958. 
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detected by a r ece ive r  at point (7;  this i s  the point to which the object will 
have moved during the t ime it takes the s ignal  to t rave l  to the Ea r th  and 
back. Suppose the velocity I’ of the object makes a n  angle tk with the 
heatning direct ion . -IH; both \. and ++, can  be regarded a s  constant during the 
t ime i t  takes  the s ignal  to t rave l  to the Ear th  and hack, and the angle 
smal l .  

i s  
The  Doppler shift i s  thus 

L! 1. <$,.,) (5.27) 

i.e., the frequency shift i s  proportional to the projection of the vector  L~ on 
the heaming direction. 

the direct ions 9 i .  4?. 9 :. the sys t em can  measu re  the three  projections \’!, I‘:, 
I ’  of the relative velocity L-ector on these  direct ions.  Let q ’ q q  be the 
contravariant base  vectors  corresponding to qi4.9., so that the vector  \ ’  can  
be written in the fo rm 

Thus, if there  are three  t ransce ivers  on board the moving object beaming in 

The  orientation of the Doppler velocity me te r  antennas relat ive to the 
body of the object i s  known, i.e., the orientation of the unit vectors  4!. 9, .  q. 
i s  given. The  orientat:on of the iner t ia l  platform relat ive to the body of the 
object is also known. 
V r .  \.,,. I’, of the relat ive \.-elocity vector  \’ along the acce lerometer  
sensi t ive axes .  

Note that the iner t ia l  sys t em measures  the absolute velocity of the point 
:vherc ( o r  near which) the acce lerometer  sensi t ive m a s s e s  are located. The  
Doppler velocity me te r ,  on the other  hand, measu res  the projections of the 
relat ive velocity of those points where  ( o r  nea r  which) the heaming antennas 
a r e  mounted. The  different antennas ( o r  pa i r s  of receiving and t ransmit t ing 
antennas) a r e  placed at different points, all at cer ta in  dis tances  f rom the 
point o f  the sensi t ive elements.  A s  a resul t ,  the re la t ive velocity vector  
measured by the iner t ia l  sys tem may differ f rom that measured by the 
Doppler even if both sy:jtems are ideal. 
difference in these velocities is clearly small ,  and the effect of the error i s  
therefore  negligible. 
Doppler in fact  measu res  the relat ive velocity of that point whose coordinates 
are  detcrmined by the iner t ia l  sys tem.  

Fur ther  note that the antennas radiate  a beam of finite width, so that the 
radiation is  ref lected by a cer ta in  area of the Ear th’s  surface,  and not by a 
single point. 
Doppler shifts .  A simiLar effect resu l t s  when V and ‘I) are changed between 
the sending and the reception of the wave packet (or the pulse train).  
the other  hand, the Doppler h a s  a fair ly  high random noise level, and the 
effective passband of the processing channel in the rece iver  i s  therefore  
made fair ly  narrow. As a resul t ,  the Doppler i s  incapable of measuring the 
instantaneous relat ive velocity; it only produces a cer ta in  average  figure, 
wnich i s  equivalent to a cer ta in  delay. In other  words, the Doppler readings 
I “ , .  I.~?!, b’,,: are not equal to  the projections V ! ,  L*3 of the relat ive velocity 
on the direct ions 4,. 4:. < v i .  

? r o m  V , .  L’2,  V ,  we can  thus find the projections 

However, the integral  over  the 

In what follows we will therefore  a s sume  that the 

The reflec-ted s ignal  therefore  contains a whole spec t rum of 

On 

The two s e t s  of quantities are related to f i r s t  
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approximation by differential expressions of the form 

(5  2 9 )  dVD1 T - +VDl = VI. dt 

Here  T =  i/AQ is the t ime constant, AQ being the effective passband of the 
processing channel. The t ime constant T is a t  most a few seconds. When 
the Doppler velocity me te r  is considered in  conjunction with the inertial  
system, this t ime constant is ignorable, s ince the period of natural 
oscillations of the inertial  sys tem i s  of the o rde r  of the Schuler period, i.e., 
tens  of minutes.  

In what follows we will a s s u m e  that the Doppler m e a s u r e s  the velocity v, 
of the object re la t ive to the Ea r th ' s  sur face  below the moving object. Since 
this is the velocity re la t ive to the neighborhood of the point where the 
cur ren t  radius-vector  r of the object c r o s s e s  the surface of the geoid, we 
have 

~ , = v - - a  x r + ,  (5.30) 

where v is the absolute velocity of the object, a is the angular velocity of 
the Ea r th ' s  rotation, and p is the distance f rom the Ear th ' s  center  to the 
Doppler reference point. 

reading, i.e., V b =  V,+AV, .  

F o r  motion near  the Ear th ' s  sur face  p/r - 1. 
The Doppler e r r o r  will be designated Av,. Vb  is the actual  Doppler 

The var ia t ion 6V, of the Doppler readings is 

(5 .31)  6V D -  - V' D - V, = AVO. 

IAV,I is of the order"  of 0.001 I V I .  

55.3. DOPPLER DAMPING OF AN INERTIAL SYSTEM 

5.3 .l. 
E r r o r  equations 

Unperturbed (ideal) operation equations. 

W e  have f rom the preceding 

V, = v  -ax r $. (5.32) 

The first integration in the inertial  system, according to the ideal 
operation equations (1.36). gives the velocity vector v,  and the second 
integration provides the radius-vector r .  
velocity 

We  can thus find the relat ive 

~ = o - a x r P .  (5 .33)  

We now form the difference 

A V = V - V D .  (5 .34)  

* See, e.g.. McClu re ,  C.L. Theory of Inertial Guidance. - Prentice Hall. 1960. 
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If l V D  = 0 (i.e., a n  ideal Doppler velocity meter ) ,  and the iner t ia l  sys t em 

For perturbed operation and l V D &  0, the variation Av'=blv i s  given by 
i s  e r ror - f ree ,  we have l V =  0. 

the equality 

b A V =  - (v  - a x r + +w,) + 
+[v+tm - zx x r +- - b ( n  x r +\I= 
= - 6u >( r + - zz )C air f)- A V ~ .  ( 5 . 3 5 )  

The vector bu i s  obtained f rom the following considerations.  The angular 
velocity vector of the Earth is given in the fundamental Ca r t e s i an  sys t em of 
coordinates,  whose orientation on board the moving object i s  known to within 
a s m a l l  rotation angle A, which i s  obtained f rom the second group of e r r o r  
equations. Therefore ,  

6a = - e x II, ( 5 . 3 6 )  

Now 
. .  

6( .") = br 0 + rbp - r Pdr . 
r2 

Retaining t e r m s  which contain the product of the variations and the squa re  
of the eccentricity of tke Clairaut  ellipsoid, w e  find 

( 5 . 3 7 )  

Inserting ( 5 . 3 7 )  in ( 5 . 3 5 )  and dropping the s m a l l  product U W ,  w e  finally 
have 

( 5 . 3 8 )  I b ~ v  =tm+(e j< n$)  x r -  CI x (6r + - - r T ) - - l v 0  a l r  

( l r  =Ah\.  

The difference 1 V  between the relat ive velocity measu red  by the iner t ia l  
sys tem and the Doppler velocity can be put to work f o r  damping the iner t ia l  
system. It suffices to a l t e r  the ideal operation equations (1.36) a s  we  did in 
(5 .4) ,  namely we should take 

v = =  f ( n -  m ,x v + g -  k, 1VV)dt + @, 
O 

f 

r== ('o - m  x r ) d t  ++. 
J 

AV == V - V,. 

Here,  a s  in (5 .4 ) ,  the dimensions of k, a r e  sec". 
Our a i m  can b e  achieved a l s o  by writ ing (1.36) in the fo rm 

0 

o =  i p - - m  x V + g ) d t + v o ,  

( 5 . 3 9 )  

(5.40) 
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h V  = v " - V [ ) .  J 
Here the dimensions of k ;  a r e  obviously sec .  Dot denotes differentiation 

in the axes fixed to the inertial  platform, i.e., in the same axes in which we 
integrate in Eqs.  (5 .39 ) ,  ( 5 . 4 0 ) .  

free,  and the initial conditions a r e  exact, w e  have, as before, \V-  0, and 
Eqs.  (5 .39 ) ,  (5 .40 )  therefore  coincide with the corresponding equations (1 .36 ) .  
Otherwise,  the motion of the system i s  perturbed. This  perturbed motion, 
in general, i s  different for Eqs. ( 5 . 3 9 )  and ( 5 . 4 0 ) .  In ei ther  case,  however, 
it differs f rom the perturbed motion for  k ,  = 0,  k ;  = 0, discussed in the 
previous chapters .  

If an ideal Doppler is assumed, the inertial  system elements a r e  e r r o r -  

Let us  consider the perturbed motion with Eqs .  ( 5 . 3 9 ) .  
Varying these equations, we get 

We will assume a three-accelerometer  sys tem in which the gravitational 
accelerat ion i s  formed using external  guidance information on the altitude h 
of the object. Then, by ( 2 . 1 2 ) ,  

Inserting 6w f rom the second equation in (5 .41 )  in the f i rs t ,  we at the 
same time substitute for 6 A V  and dg their  expressions from (5 .38 )  and (5 .42) .  
After obvious manipulations, we obtain the vector equation 

( 5 . 4 3 )  

Eq. ( 5 . 4 3 )  gives the f i r s t  group of s ca l a r  e r r o r  equations for  an inertial  
sys tem with simultaneous a l t imeter  and Doppler correct ion.  
replaced Eq. (2 .15a)  to which it is reduced when k ,  = 0 .  

e r r o r  equations does not change: it re ta ins  the s a m e  form ($=Am)  a s  for 

autonomous inertial  systems.  
Eq. (5 .43 )  is the e r r o r  equation of a three-accelerometer  system. The 

f i r s t  group of e r r o r  equations fo r  a two-accelerometer system (with the 
acce lerometers  lying in the plane of the horizon) can  also be derived f rom 
Eq. (5.43). 
the axis  x ,  y of a coordinate sys tem in which the z axis  points along the 

It c lear ly  
The second group of 

To this end, the vector equation (5 .43)  should be projected onto 
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radius-vector  r .  In the resul t ing scalar equations, bz  should be replaced 
with l r ( = l h ) .  Finally, we obtain 

(5.44) 

f [ o p ,  + 0, + k ,  (az - u, 4 J j6x f  20,&= 

= l n Y  -+ g h , r  -+ Amxr - o y r  Amz  - 

+- k ,  ( l L ’ D y +  uu,H1, - orr,H, +- r Amx)  
- o,r .\my - i ( o p Z  - fix - k,o,J I r  + 20, 1; + 

6 l r  = Ih ) .  

F o r  k, = 0, these equations are reduced to Eqs. (2 .28 ) .  
The  e r r o r  equatiC2ns (5.43), (5.44) were  der ived fo r  the case of Doppler 

correct ion in accordance with (5.39). 
functioning in accordance with (5.40) can  be similarly derived. 

The  e r r o r  equations f o r  a sys t em 

By varying the f i r s t  two equations in  (5.40), we get 

d =An - Am >( v - o x b + ag. 
a; = tm - h x r - o x ar + k :  (a AV+ o x a AU. 

(5.453 

Inserting for  aAv in the second equation i t s  exprcssion f rom (5.38) and 

1 
solving the resulting equation for &I, we get 

F r o m  (5.46) and I.he f i r s t  equality in  (5.45) we now find 

(5.47) 
b = - ( 4 1  - Am x P) fag) +a; +o x 6r - 

- k;$ [:a x tw f --(e x a) x rf - u x r yl a& + IV,]. 

This  expression for &v is inser ted together with 6g f rom (5.42) i n  
Eq.  (5.46) or into thtr f i r s t  equation in (5.45).  
w e  obtain the vector  equation 

After  obvious simplifications, 

dZ Ir -- d t 2  +hi$$  + R ;  $ ( a  x ar:) + 

-- dt  ( ~ m x r ) + 3 w $ +  

dr - + ( 1  - 3k;  f) & = An - Am X 
d 

(5.48) 
A r  

+ k i t  (h- Am x $ +3w 7)i- 

-i-F [COX a) x r f t .  x r T-AV,]] d’ a &  

(Ar = Ah). 
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For k; = 0 this equation reduces to Eq. (2.15a). 
Eq. (5.48) is the e r r o r  equation for  a three-accelerometer  sys tem 

functioning according to (5.40). To obtain the corresponding equation for a 
two-accelerometer system, we should project the vector equation (5.48) on 
the axes n, y of a coordinate system whose z axis  points along the radius-  
vector r . In the resulting equations 6z i s  replaced with Ar and the projections 

of the vector f(7) on the right a r e  omitted. 

5.3.2. 
equations for an orthodromic system 

Ideal operation equations and e r r o r  

Before proceeding with the analysis of the e r r o r  equations (5.43), (5.44), 
(5.48), i t  will be useful  to repeat  the derivation of these equations for  some 
par t icular  inertial  navigation system. 
accelerometer  system which measures  the orthodromic coordinates. 
ideal operation equations of this system a r e  Eqs.  (2.23). 

We introduce damping with the aid of Eqs.  (5.39). 
(5.33). (5.34), (5.31), the f i r s t  two equations in (2.23) take me form 

A s  an example, we choose a two- 
The 

According to (5.39), 

1 

W, = [ (n ,  + vYmz - io, + g, - k, AV,) dt + v!, 

V, = [ ( f l y  + ;ox - vxoz + g, - k, AV,) dt + v;. 
0 

/ 

0 

In (5.49) 
bV, = V ,  - V,, ,  AV, = V ,  - V,, ,  

V ,  = v, - pu (- p3, sin z cos S - pa sin z s i n s +  

I + 831 cos 2). 

V ,  = vy + pu (- p3, sin S +os cos S). 

(5.49) 

(5.50) 

We have already mentioned in the preceding that i t  is undesirable to 
perform any computational operations on the accelerometer  readings before 
their  integration. 
the f i r s t  two equations in (2.23). 
rapidly varying components. 
convenient to partition each of the integrals  on the right in Eqs.  (5.49) a t  
least  into two. 

In the computations we w i l l  there- 

fore  operate  with fairly slowly varying quantities [ n,dt .  I ny dt , so that slow 

computers can be used. Similarly, AV,. AVy can be integrated separately; a 
fur ther  simplifying s tep  is to expand AV,. AVy in accordance with the las t  
th ree  equalities in (5.50) and to proceed with separa te  integrations of 
V D , .  V D y .  
view of the f i n a l  resu l t  and the e r r o r  equations, and in what follows we will 
therefore  consider the ideal operation equations in the form (5.49). 

of the general  system considered in the previous section. 
Eqs.  (5.44). 

This  r e m a r k  is equally applicable to Eqs.  (5.49) and to 
The reason for  this is that n,, ny contain 

In the actual design s tages  i t  may prove more  

The f i r s t  will be integrals over n,, n y .  

The different alternatives a r e  entirely equivalent f rom the point of 

The e r r o r  equations of our damped system follow f rom the e r r o r  equations 
These a r e  

However, to bet ter  understand the meaning of these equations, 
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we will der ive them independently for  an  orthodromic iner t ia l  sys tem f rom 
the corresponding operation equations. 
f i r s t  group of e r r o r  equations, s ince  the second group obviously does not 
change. 

(5.50) together with {.he remaining relat ions in (2.23), which complete 
Eqs.  (5.49), (5.50) to a c losedsys tem.  The  solution of the problem i s  
simplified by the previous t reatment  in 54.2, where we derived the error 
equations of a n  orthcidromic sys tem without Doppler correct ion.  
s ta r ted  with ideal operation equations (4.20). Putting e = 0 in  Eqs .  (4.20), 
we see that they differ f rom Eqs. (4.49), (4.50), (2.23) only in  that the 
integrands in  the f i r s t  two equations in (4.20) do not contain the t e r m s  k ,  .lL’,r, 
k ,  IV,.. 
k,b.lI.’,, k,6.”, of these ex t ra  t e rms .  The  problem thus reduces  to a computa- 
tion of these variaticms, af ter  which the resu l t s  of 54.2 can  be applied. 

A s  before, x,,y,,z,, stand for  the unperturbed axes  fixed to the iner t ia l  
platform. The  or ier la t ion of the per turbed axes  x y t  re lat ive to .ro?i,zI, is 
defined by the sma l l  angles  u, p. v in the matr ix  (4 .22 ) .  F r o m  this mat r ix  
and the equality V l =  r; -+ 1v0 w e  have 

We will confine the t reatment  to the 

T o  obtain the f i r s t  group of e r r o r  equations, w e  should vary  Eqs.  (5.49), 

The re  we 

The  e r r o r  equations correspondingly differ only in  the variations 

(5.51) 

where AVO*. U’ov a r e  the Doppler e r r o r s .  They also include the e r r o r s  
associated with the conversion of the relat ive velocity components along the 
Doppler antennas to the velocity components along the platform axes. 

F r o m  the las t  twc equalities in  (5.50) we see that the relat ive velocity 
projections V i  determined by the per turbed iner t ia l  sys t em a r e  

(5.52) 

But 

F u r t h e r  

( 5 . 5 3 )  

I ua(-fipl,sin zcosS-pB,sinzsinSfp,cos z)= 
(uzJ  bz + u,: sin zbS). 

n6(- p3, s ins  +fi3?cosS) = 

- _-  
=- (as cos z - u, sin I) bS. 

(5.54) 

Inserting (5.53), (,5.54) in  Eqs.  (5.52), we introduce new variables  a,. a, y2 
defined by (4.37) with E = 0. This  gives  

+ aV,, - %+ + P (-- uz,a2 + ur,y2), (5.55) v‘ -- vX, - 
v’ _- 

-_ 

Y -- VY, + PYX? + w, 4- ux. @ - P(U*.B:! - Uy,Y2). 
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Final lyinser t ingfor  the angles a,, &. y2 their  expressions in t e rms  of U, 0. y, 
ex,. oY,,, e=, f rom (4 .39 )  and dropping the fac tors  ux06p, ~, , tp ,  we obtain from 
( 5 . 5 5 )  

( 5 . 5 6 )  I 

1 

l 

v i  = vxux, - pa, + 6vx, +- P (- u2,ex, + ux,Oz,) + P (- u+a + ux0y). 

v; = v,, + PU, +aV,, - P ( ~ 3 ~ ~  - ~ , , 0 ~ , )  - P (uZp - P ~ J ) .  

From (5 .56) ,  (5 .51) ,  seeing that 

v x ,  = vxo - pu,,. vy* = Vy, + pu,. v,, = i, (5 .57 )  

we obtain the variations 6AVXa=V:-Vh,.  a A v y o = v ;  - V & .  They a r e  given by 

( 5 . 5 8 )  
6 AV,, = avx,, + P (- u2,ex., + u,,ez,) - PW + roxOv + ;p - A V ~ , , ,  

6 AVym = av,, - P (uz,ey, - uy,ez,) - PU,,B + m y o y  - ;a - A V ~ , ~ .  

To fur ther  simplify Eqs.  (5 .58 ) ,  we use  the f i r s t  two equalities in ( 4 . 2 5 ) .  
Seeing that in these equalities we may take ar = Ar and inserting bo,,. boye 
f rom (4 .24 ) ,  we obtain expressions for  h,,, hYe in t e r m s  of a ,  p, y. Ar, ho,,, 
Ao,,,, r ,  oxo, oYol oz.. Inserting these expressions in (5 .58 )  and substituting the 
var iables  6% and for  a and $ in accordance with (4 .32 ) ,  we get 

(5 .59 )  
a ~ v , ,  = Aro,, - rAoyo + ax - oz, - p ut, ay + p (uxoezo - uz,e,j - A V ~ , . ,  

a AV,, = - Ar ox, + rAoxo + a i  + (azo - $ ul , )  ax + P (uy,ez, - ~ 2 , e y , )  - A V D ~ ~ .  

. (  1 

It i s  readily seen  that in an unperturbed system, when the instrumental  
errors vanish and 6x=6y= e ~ o = e y , = ~ , , =  0, we have zero  on the right in 
Eqs. ( 5 . 5 9 ) .  Therefore,  aAV,= d A V y o =  0, a s  i s  proper. 

(5 .41 )  for  the case  of a two-accelerometer system. 
second equality in (5 .41 )  we get 

Let us  compare Eqs.  (5 .59 )  with the expressions obtained from Eqs . (5 .38 ) ,  
F r o m  (5 .38 )  and the 

a A v  = a; + o x 6r + Am X r + 
(5 .60 )  Ara +(e x I )  X r :  - I X (ar p - r  7) - AV,. 

In our  case  

br  = 6x x,, +by yo + 6zq.  ( 5 . 6 1 )  

where x,,. yo. z, a r e  the unit vectors  of the corresponding axes.  
taking the projections of Eq. (5.60) onto the axes x,. yo, putting p = a ,  and 
seeing that Am,=-Ao,,. Am,,=-Ao,, Amz,=-Ao, ,  w e  obtain E q s .  ( 5 . 5 9 ) .  

Therefore,  

Varying E q s .  (5 .49 ) ,  we get 

( 5 . 6 2 )  1 b;, =On, + o, by + vy boz - ;aO, - oy 6; + bg, - k16 AV,. 

&, =any + + b, - v , b ,  - ot 6v, + 6gy - k,b AV,. 

These equations differ f rom the f i r s t  two equations in ( 4 . 2 5 )  only in that 
F r o m  Eqs.  (4 .25)  they containadditional t e r m s  -k,6AVx. - k , a A V , o n  the right. 

we derived Eqs.  (4 .28)  and then Eqs.  (4 .35 ) .  Hence, Eqs.  (5 .44 )  should be 
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obtained from Eqs.  (4.35) by adding these t e r m s  to the right-hand s ides .  
Using (5.59). we readi ly  see  that introduction of the t e r m s  - k , b N ’ x , ,  - k , h  Wy, 
on the right in (4.35) indeed leads to Eqs. (5.44), s ince .h,,=-Am,, A t * , , =  

We have given a direct  derivation of the e r r o r  equations for  an ortho- 
dromic inertial  sys tem with ideal operation equations in the form (5.39). If 
t h e  damping is introduced into the sys tem in accordance with Eqs .  (5.40), 
and not (5.39), the f i r s t  t w o  equations in (2.23)  do not change, but the next 
two equations in (2.23) a r e  definitely a l te red .  

= - \rrt . l(.i: = - Am. 
* > ’  

They take the form 

(5.63) 

where AI’, and -\Vy a r e  expressed by (5.50). 
The f i r s t  group of e r r o r  equations i s  obtained from the relat ions 

(5.63a) 

which a r e  the variational form of the f i r s t  two equations in (2.23), and from 
the variations of Eqs.  (5.63) 

I &,, = an,” + wr, 6vy, t vy,60z, -A; wY. - ih,. 
ailye = any, + A&, + bo,, - w., b ~ , ,  - vxo hz0. 

(5.64) I - Aro,, - r bo,, = bv,, + k:  (6 Aliy9 + w ~ ,  a AVx0 - uxo6 W2J. 

Aro, + r by, = bu,, + k ;  (6 AVx, + oy,6 Ab’=, - o2,6 AVYJ 

T o  Eqs. (5.63a), (5.64) w e  should naturally add Eqs.  (5.58) for  6ALF,,  a A v y v ,  
Eqs. (4.24) ,  (4.26) fo-* b,,. hzv, an,*, any,, and a l so  Eqs.  (4.32). 

5.3.3. Stability analysis  

Consider the homogeneous equation 

(5.65) 

corresponding to the vector equation (5.43), i.e., the e r r o r  equation of an 
inertial  sys tem with a l t imeter  and Doppler correct ion,  when the Doppler 
cor rec t ion  follows Eqs.  (5.39). 

Eq. (5.65). 
different f rom the homogeneous equation (5.5). 

Our object i s  to investigate the stabil i ty of the motion descr ibed by 
First note that the s t ruc ture  of this equation i s  somewhat 

An additional t e r m  k , a X d r :  appeared in Eq. (5.65). I ts  origin is self- 

evident. After all, the damping in Eq. (5.5) u ses  information on the absolute 
velocity, whereas  in Eq. (5.65) it i s  based on Doppler measurements  of the 
relat ive velocity. If the Ea r th  did not spin (a= 0), the two equations would 
coincide. 

F o r  r = const, i.e., motion a t  constant dis tance f rom the Ear th’s  surface,  
the projections of the vector equation (5.65) onto the axes  &, x. 5. or 5.  q. C 
are equations with constant coefficients. Thus, projecting onto constant- 
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6:. + k ,  a{.+ oibv. - k ,  $ u6L. = 0. 
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Hurwitz's inequalities give the following conditions for  negative real 
pa r t s  of the roots of the charac te r i s t ic  equation (5.71): 

2 4  > 0, 2k,  [k:  + oz-Lu2( 1 + 2 F)] > 0, 
' u:LI? 

' 

4kT ( G$ - T )  ( k i  + 4u7  > 0. 

(a$-u*f+k?u?( 1 - :)'> 0. 

(5.72) 

These  conditions, like (5.69), are always sat isf ied for  k ,  > 0 .  
We have so  far co,nsidered motion at constant distance f rom the Ear th ' s  

center .  
asymptotic stabil i ty also for  a var iable  r .  Indeed, let  

W e  will now show that a n  appropriate  choice of k, will ensure  

i.e., the object moves near  some  constant dis tance YO f rom the Ear th ' s  
center .  Eqs. (5.66) then can  be written in  the form 

(5.74) 

where 

(5.75) 
&-Y- 

LI - f13 - Const. 

Fi r s t  let u s  conce:ntrate on the third equation in  (5.74). We wr i te  it in 
Cauchy form,  as a s e t  of two f i r s t -order  differential equations: 

(5.76) 

where 

x -&L a,==&-*. (5.77) 1 -  

Changing over  to  the normal  coordinates* b,. u3, we make  the substitution 

x I  = b, ( E  cos u3 - vsin 113). 

X? = b, COS uJ, 

* See Bulgakov, B . V .  Kolexniya (Oscillations). - Gonekhizdat. 1954. 

(5.78) 
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In t e r m s  of the normal var iables  b3, u3, we have 

1 -  -_ db3 - eb3 - - 'px sin u3( dt 

dt  
- du3 - - v  -b,v 1 -  'px cos ua, 

where now 

(5.79) 

(5.80) 

Inserting Gx in the f i r s t  equation in (5.79). we get 

dbJ dt = 6 ,  ( E  - 1 0 2  v 0 ro sin u3 cos u3) .  (5.81) 

To ensure stability, it  is clear ly  sufficient for  the expression in paren- 
theses  to be always negative. Hence, and from (5.78), we get 

This  condition is satisfied if 

(5.83) 

where 

We see  from inequality (5.83) that to ensure asymptotic stability, k ,  
should be chosen between the l imits  

2%C < k ,  < a0 (2 - ~ 2 ) .  (5.85) 

Here q can be used a s  a measure  of stability. 
Turning to the f i r s t  two equations in (5.74), we write them in Cauchy 

form: * 
Yl = - k,Y, - w;Yz +vy* 

(5.86) Yz = Y,, 

) , = - k , z , - ~ ~ Z 2 + ' p x ,  

2 2  = 2,. 

where 

(5.87) 

The method of stability analysis that follows was developed jointly with N.A.  Parusnikov. 
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We change over  to normal  coordinates: 

I ~ , = ~ , ~ E c o s u ~ - ~ \ . ~ ~ ~ u , ~ ,  

- _  v1 = b,  cos u t .  

Z I = b ~ ( E S O S U , - - $ l f l U : ~ ,  

= b2 C O S  ~ 1 .  

In these variables,  Eqs. (5.E6) take the form 
. 1 -  

1 -  

'j; t-b, - T q y s i n u , .  -= 

3- = v  - - qly cos ul, 
dt  >bt  

%= eb? - LGr stnu,. dt 
du,=v-- i -  

dt bZV 'Fr cos U?. 

In accordance with (5.87), (5.88), the functions cy. G r  a r e  given by 

We introduce a new function 

( 5.88) 

(5.89) 

(5.90) 

U = b : + b i .  (5.91) 

F o r  asymptotic stability i t  is c lear ly  sufficient that this function go to 
ze ro  for  t going to infinity. 
6:,, t&, &n+, brl, will asymptotically approach z e r o  with time. 

Then b,, b2 ,  and a l so  p,. y2$ zI, z2, and hence 

Let u s  now establish sufficient conditions for 

l im U = 0. 
t - f a  

(5.92) 

To this end, we take the total derivative dU/dt.  Using the definition(5.91) 
of U ,  we obtain f rom the first and third equations in (5.89) and Eqs. (5.90) 

dU 2 dt = 21:U - [c$, f (4 sin ul cos u1 + b: sin r12 cos u$ - 

- k, ub,b2 sin (u, - u2)]. (5.93) 
Let 

b, = b sin x ,  b, = b cos x .  b2 = b? + b;. (5.93a) 

F r o m  (5.93) we then have 

dU I - tit = X/ - - v [,2*(sin o r a  ut cosuI  sin*X + 
+ sin u, cos u2 cos2 x )  - k, 4 u sin (u, - u,) sin x cos x (5.94) 

For the function in  b rcces  we wr i te  
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I 
u will go to ze ro  for  t + .O i f  the sign of the derivative dU (it is always 

A sufficient condition for  this is c lear ly  minus that of Lr.  

91 < 0. (5.95) 

We have the obvious es t imates  

(5.96) I I s i n u ,  cos u ,  s inzx  +sin u?cos u2cos2x I 

I sin (u, - u,) sin 7. cos x I < 1 . 
Therefore  inequality (5.95) is definitely satisfied for  

f . 
l a  
y, 

(5.97) 

where c is expressed  by (5.84) 

l imits  for  k , :  
Hence, seeing that e and u/oo are sma l l  compared to unity, we obtain the 

2 C  (o),) + U )  < k ,  < 2 ((do + U C ) .  (5.98) 

Since c << 1 and u/q,<< 1, the l imits  (5.98) for  k ,  can be taken to coincide 

4:. provides a measu re  of stability. 
with the l imits  (5.85). 

worse  than that corresponding to the factor e - m ' " l v * l .  
definition of LI and Eq. (5.94). Indeed, by (5.94), 

The  damping in  the sys tem is no 
This  follows from the 

- dlJ .:<. - 2U min I q2 1 . (5.99) 
dt  

Hence 

(5.101) 

where bo is the init ial  value of b .  

mete r  sys tem operating in  accordance with Eqs. (5.39), and proceed to an  
iner t ia l  sys tem using Eqs. (5.40). 
Eq. (5.48). 

At this point we will end our  analysis  of the stabil i ty of a three-accelero-  

In this case the vector  e r r o r  equation is 
The corresponding homogeneous equation is 

For r = const the projections of this equation on the axes E,. q,, i, give 
three  scalar differential  equations with constant coefficients: 

(5.103) 
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For  k;”: ; ’ -k , ,  the third equation in (5.103) reduces to the third equation 
in (5.74). 
is 

The charac te r i s t ic  equation for the f i r s t  two equations in (5.103) 

(5.104) I 1  + k ,  , - i - ) p 4 + 2 k ; w ~ p l f o ; - : ( 2 - t k ; o ) ~ p ? - - k ~ , ) , i ’ p f . ~ = 0 .  

Applying Hurwitz’s c r i te r ion  we find that in virtue of the inequality ?:-e > 0 the r ea l  par t s  of the roots  of Eq. (5.104) a r e  always negative for 

k ,  ;’ 0. 
thus damped. 

b e  ensured by an  appropriate  choice of k,‘. This  choice can be made a s  
above, for Eq. (5.65), i.e., by changing over to normal  coordinates. Note, 
however, that unlike Eq. (5.65), the coefficients of Eq. (5.102) not only 
contain the distance r f rom the Ear th’s  center  but a l so  i t s  t ime derivatives. 
Therefore ,  in choosing k ;  for  r = r ( r )  we have to consider not only the 
deviation p of r f rom some constant value ro but also the r a t e  of change $ 
and the corresponding accelerat ion J .  

three-accelerometer  system. 
rome te r  sys tems (with the acce lerometers  in the plane of the geographical 
or geocentric horizon) a r e  obtained, a s  we have noted before, f rom Eqs.  
(5.65), (5.102) by taking their  projections on the axes  x, .v of the co-moving 
sys tem whose z axis  points along the radius-vector  r and the y axis  l i es  in 
the plane of the meridian,  say.  
Eqs.  (5.44) (if only the t e r m s  on the left a r e  retained). 
homogeneous equations a r e  

The solution of the homogeneous equation (5.102) for  r =cons t  i s  

If r is  a function o f  t ime (and not constant), asymptotic stability can sti l l  
The sys tem i s  asymptotically stable for  k,’ > 0. 

Eqs. (5.65) and (5.102) descr ibe the perturbed motion of an e r r o r - f r e e  
The corresponding equations for  two-accele- 

In this way w e  pass  f rom Eqs.  (5.65) to 
The corresponding 

1 bk + k ,  6-i  +- 1 E -02 - o:)6,t + r’ Y 

(5.105) 

Let us  investigate the stability of these  equations. F i r s t  we consider  
motion with constant velocity along a parallel, when the coefficients of 
Eqs. (5.105) a r e  constant. 
(5.105) takes the form 

Then o , = u , =  0. The charac te r i s t ic  equation of 

p (  + 2k,p’+-(kf+ 2 4  f 2 4  - ai) p 2 +  

+ k ,  (20$+  2 4  -0: - 40,uz :) p + 
+(cfi; - b$(o)i - oi - a;j+ (oz - u z r  E)’= 0. (5.106) 

Eq. (5.106) differs f rom (5.10) in the coefficient before p and in the f r ee  
For u = 0 this equation reduces to (5.10), and for  k , = O  it reduces  to te rm.  

(2.43). 
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Application of Hurwitz's c r i te r ion  to Eq. (5.106) gives the following 
conditions of asymptotic stability: 

kl > 0. 

2k:  + 20; + 2 4  - o', + 4 0 p Z  4 > 0 , 

(8~,:+2k:)(2wi-a;-  2u:$-)+a; > 0 ,  

(0; - W:) (6); - 0; - W2 J+ k:(az - u ,  q> 0. 
We have previously established that in the region 

w2-($ - 2 
0 y % > O  

(5.107 

(5.108 

a two-accelerometer system i s  asymptotically stable without Doppler 
correction. 
asymptotic stability a r e  observed in the region (5.108). 
and fourth conditions, this is obvious. 

It i s  readi ly  seen  that for  k ,  > 0 a l l  the conditions (5.107) of 
For the first, third, 

F r o m  the second condition we have 

Since 

(5.109) 

(5.1 10) 

inequality (5.109) i s  a lso satisfied in the region (5.108). 

two inequalities 
For equatorial motion, when a,= 0, ut = 0, inequalities (5.1 07) reduce to 

k ,  > 0, 4-4 > 0. (5.1 11) 

In this case,  (5.105) falls  into two second-order equations. Their  
character is t ic  equations a r e  

p 2 +  k , p  +(ai-$) = 0,  p 2 +  k , p  +ai= 0.  (5.112) 

whence again follow inequalities (5.11 1). 

the two se t s  of inequalities coincide for u = 0 :  
construct the stability region corresponding to (5.107) in the ay, a, plane. 
Since the Earth 's  spin u is smal l  compared to a,, these regions will be 
close to the stability regions (5.11) shown in Figure 5.1. 

Conditions (5.107) provide a solution to the problem of stability of inertial  
system for  motion with constant velocity along a parallel. 
analysis of Eqs. (5.1 05) in case  of more  general  motion is not so easy, since 
W e  should investigate a system of fourth-order differential equations of quite 
a general  form with variable coefficients, which a r e  essentially a rb i t r a ry  
functions of time. 
available. We can, however, find sufficient conditions of asymptotic 
stability for the case  of general  motion provided the velocity of the object is 
much l e s s  than the c i rcu lar  velocity. 
objects, such a s  sea vessels ,  aircraft ,  winged rockets. 

Note that conditions (5.107) of asymptotic stability a r e  analogous to (5.11): 
A s  for  (5.11). we can 

Exact stability 

No regular  methods for  the solution of this problem a r e  

This  covers  a fairly wide c l a s s  of 
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To find the sufficient conditions of asymptotic stabil i ty for these cases ,  
consider  the projections of Eq. (5.105) onto azimuthally free axes  with u , = O .  
Gqs. (5.105) thus take the form 

(5.113) 

Here  r ,  u,. a)+. oy a r e  s o m e  functions of time, determined by the law of 
In what follows we will take motion of the object. 

(5.114) 

The  f i r s t  inequality in (5.114) indicates that the velocity of the object is 
much l e s s  than the c . r cu la r  velocity. 
r e s t r i c t  the variation of r .  
of constant radius  ro concentric with the Ea r th .  

The other  conditions in (5.114) 
They imply that the object moves nea r  a sphe re  

If !$e. 1, Eqs. (!5.113) can  be wri t ten in a somewhat different form: 

( 5.1 1 4a) 

where 

Subs t i tu t ing 

6% = x,, 6% = %*, 6 j  = y,. 6y = yz, 

we write Eqs. (5.114a) in the fo rm 

x - - - k x  - 2 

xq = X I ,  

j , = - k y -  I 1 @oY2-t(F2* 

Y2 = Y, .  

I -  1 I %X2+(PI’ 

where, by (5.114a) arid (5.115), 

VI = ( 0 0  ?3 + + 0;) x2 - (oxoy + k,uz $) Yz, 

%= (47 + a:) Y2 - (oxoy - k,uz ;) x2. 
3) 

\Ve now change to the normal  coordinates b,. u , ,  4. u2: 

x ,  = b, (E cos 11, - vs in  u, ) ,  
x p  = b, COS u1. 

y , = b 2 ( e c o s ~ 2 - v s i n u 2 ) ,  
y2 = b2 COS u2, 

(5.115) 

( 5.11 6) 

(5.117) 

( 5.1 1 7a) 
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where 

k 
E=-.--!- 

Eqs. (5.116) in  normal  coordinates take the fo rm 

1 -  =Ebl - -ql Slnu,. dt 
du, - 1 -  - - v - - 'p, cosu,, 
dt biv 

3 =Eh2 - --cp,sinu,, 1 -  

duz - 1 -  - dt - v -  - ~ c o s u ~ .  
b2v 

(5.118) 

Here  

GI = (6): f + a;) 6, cosu, - ( x y  w w + k,u, 4 
& = ( m i $  +a2 b 2 c o s u , -  ( w x w , - k l u , ~ ) b , c o s u , .  

W e  introduce the function 

U = b: + b:, 

In vir tue of Eqs. (5.118) 

- )I $ = 2  [EU --(('plb,sinu,+cp,basinu, 1 -  . 

(5.119) 

(5.120) 

(5.121) 

Inserting @,, & f r o m  (5.119), we get  

1 = 2 { EU - 

- blb,o,wysin (u, + u2) + k l u ,  { blb2 sin (u, - u,)] + 
[b:w; sin u, cos u1 + bzw: cos u2 sin u2 - 

+ m i  f (6: sin u ,  cos u, + bz sin u2 cos u,) \ . (5.122) 

The  projections wx, wy can  be wri t ten in  the form 

o,=Qsing,,  o,=Pcos$,,  (5.123) 

where  the function Q ( t )  is defined by the f i r s t  re la t ion in  (5.114), and 0, is 
some  angle, which is a function of t ime.  Clear ly  

9 cos $, = ~ 

OX 

p-7. W' ox + % 
sin$,=- 

A s  in  (5.123), we  may wri te  

b, = b sin q2, b, = b cos $*, b = v m .  (5.124) 
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Introducing (5.123), (5.124) on the right in (5.122), we get 

- dU := { e - f [orcsin u, cos u, sinZ$,cos?$, + ,it 

+sin u l iosu l  cos'$, sin-'$, - 
- siniu, t u , )  sin J'i c o s t ,  sin I $ ~ C O S  \I2)+ 

f k l u ,  s in(u2 - u , )  sinJ'lcos $:+ 

+ W ~ ~ ~ s i n u I c o s u l ~ i n ~ ~ l t s i n u l c o s u . c o s ~ ~ l ~ ] ~ .  

( 5.125) 

A sufficient condition of asymptotic stabil i ty i s  that the function in b races  

\$.e have the obvious e s t ima tes  
on the right in Eq. (5.125) r ema in  always negative. 

(5.126) 

LVe a l s o  write 

(5.127) 
max Q' = Q:, 

3 max I P I  
2rJ 

-- = c .  

Using (5.126), (5.127), we r each  the following conclusion: the expression 
in b races  in Eq. (5.125) is positive if 

(5.128) 

Comparing inequality (5.128) with inequality (5.97) we conclude, by 
analogy with (5.98), that inequality (5.128) is satisfied whenever k ,  lies 
between the l imits  

(5.129) 

Here min  I qi.I can  be used as a measu re  of stability, s ince as in (5.101) 
we have the relation 

(5.130) 

We have so  far analyzed the stabil i ty of a two-accelerometer sys t em 
with the e r r o r  equations obtained by taking the projections of the vector 
equation (5.65) on the axes  x, y .  
m e t e r  sys t em fo r  the vector  equation (5.102) can  be performed along the 
s a m e  lines.  

The  stabil i ty analysis  of a two-accelero- 
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5.3.4. 
Effect of instrumental  e r r o r s  

Solution of the e r r o r  equations. 

We will now concentrate on the e r r o r  equations (5.43), (5.48) of three-  
accelerometer  sys tems with Doppler correct ion.  We will find the solutions 
of these equations for  the motion at constant distance from the Ear th ,  when 
the corresponding homogeneous equations a r e  reduced to equations with 
constant coefficients. 

w e  obtain 
the se t  of s ca l a r  equations 

Projecting the vector equation (5.43) onto the axes E, ,  x, 

(5.131) 

where 

(5.132) 

(5.133) 

v =  1/-& 
The f i r s t  two equations in (5.131) constitute a coupled sys tem.  To solve 

this system, we requi re  the roots of the charac te r i s t ic  equation (5.68). 
Since u2 is sma l l  compared to a:, sufficiently s imple and exact expressions 
can be obtained for  these roots. 

I 

i A s  we know, the roots  of the fourth-degree algebraic equation 

P ~ + ~ I P ~ + ~ ~ P ~ $ - ~ ~ P + ~ ~ = o  (5.134) 
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coincide with the root:; of two quadratic equations 

U , Y  --a3 
A > +  P I  i A, ,?)  $ t (Y + -A,,,) =o* 

where 

A, ,?=  2 1’8y+a;-44a,, 

and y is some r e a l  root of the cubic equation 

P~-- . ta ,~~~f (2a ,a , -Sa~)p+a, (4a ,  -a$ - ai=O. 

In our  c a s e  this auxiliary cubic equation has  the form 

/CY1 = 2Y’ - ( k i t  2a:) Y2+ pa; (k: - 0;) - 2k: 51 y+ 

+ 0;(20,: - k;) + 2 4 k t  3$. = 0. ( 5.138) 

For u = 0 the roots of this equation a r e  

(5.135) 

(5.13 6) 

(5.137) 

Taking the root y,  a s  the first approximation, w e  find by brewton’s 
technique the improved root of Eq. (5.138) 

(5.139) 

Now to t e r m s  of the o r d e r  u2 we have 

For the coefficients of the quadratic equations (5.135) w e  obtain 

( 5.140) 

(5.141) 

(5.142) 

Solving the quadratic equations (5.135), w e  obtain to terms of the o r d e r  u: 
inclusive, for the roots  of the character is t ic  equation (5.68): 
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or to f i r s t  approximation 

Note that this method can a l so  be applied to find the roots  of the 
character is t ic  equation (5.71). To f i r s t  approximation we have 

(5.1 44) 

Having found the roots  of the character is t ic  equation (5.68), we proceed 
in the usual  way with the construction of the general  solutions of the f i r s t  
two equations in  (5.131). 

The form of the roots  (5.144), (5.145) of the character is t ic  equations 
(5.68), (5.71) suggests that the fourth-order sys tem of differential equations 
comprising the f i r s t  two equations in  (5.131) can be replaced by two second- 
o rde r  equations 

(5.146) 

This  is so because u being smal l  the coupling between the f i r s t  and the 
second differential equations in (5.131) is weak and in a damped sys tem the 
effects associated with this coupling do not develop fas t  enough to become 
noticeable during the transient phase. 

las t  equation in  (5.131). 
single vector solution 

The  solution of Eqs.  (5.146) is analogous to the solution (5.133) of the 
These  three  solutions can be combined into a 

, r I 

which corresponds to the vector  equation (5.43) with u = 0 on the left, i.e., 
to the equation 

(5.148) d 2  hr d 6r  df' + k 1 7  f ar = f i  * 

where the vector  function f ,  is the right-hand s ide of Eq. (5.43). 
projections of this function on the axes  E,. x. 6, are given by Eqs.  (5.132). 
The  integration in the right-hand s ide  of Eq. (5.147) is in the axes  E.s x. &.  

Let u s  consider  i n  m o r e  detail  the right-hand s ide of Eq. (5.43). 
contains an  additional t e r m  which did not appear  in undamped iner t ia l  
systems,  namely 

The  

It 

(5.149) 
a Ar k1 [AVD- u x r F - ( e  X U )  X t- $-Atti xr ] .  
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Besides the Doppler e r r o r s ,  this  expression contains a vector 8 ,  which 
is the solution of the second group of e r r o r  equations. 
is sma l l  compared to 6h and k , ,  this does not lead to any additional e r r o r s  
in position determination. 
first and the last  t e r m s  in (5.149). 
taken in the fo rm 

However, s ince u 

To f i r s t  approximation, we need retain only the 
In this case,  the function f, in (5.147) i s  

Note that the t e r m  - k ,  \m ,z'r appea r s  on the right in e r r o r  equations of 
damped sys t ems  even i f  AV,, = O  ( a n  ideal Doppler velocity me te r ) .  

To obtain a quantit,itive est imate  of the effect of instrumental  e r r o r s  on 
position e r r o r s  in a damped inertial  system, let u s  consider the c a s e  when 
the function f ,  is a constant vector in the axes  t,.  q,. i,. Let f, = a =  c x .  
Solution (5.147) then takes the fo rm 

The steady-state e r r o r  

If the sys t em is e r r o r -  
a = k ,  \k',and 

(5.151) 

is 

or = 4. (5.1 52) 

ree, except for  the Doppler e r r o r  l v n ,  w e  have 

(5.153) 

*).i 

k Or = -+ 
<,-, 

If the r a t io  k,'m,, is of the o r d e r  of unity, we have 6r - \VD(q). Let, fo r  
example, .\VD = 0.001 V. Then 6r \''I 95 F o r  velocities of the o r d e r  of 
l 0 0 0 m / s e c  we then have I h r i -  0.8km. T h e  t e r m  - k k , h m X r  on the right 
in (5.150) has  a s i m i l a r  effect. 

As r e g a r d s  the other  instrumental  e r r o r s ,  i.e., the first four t e r m s  on 
the right in (5.150), ncte that they en te r  the e r r o r  equations of a damped 
sys t em in the s a m e  form as  they appear  in the e r r o r  equations of a sys t em 
without Doppler correct ion.  However, because of their  contribution, the 
steady-state e r r o r  br in a damped sys t em is half the maximum value of this 
e r r o r  in a n  undamped system. 
the constant acce le romete r  e r r o r  An=c=t. 
s t eady-s ta t e value 

Indeed, let the only instrumental  e r r o r  be 
Then f rom (5.151) we get the 

In a n  undamped system, on the other  hand 

In br = ~ ( 1  - c o s q + )  
0.j 

and therefore  

(5.154) 

(5.155) 

(5.156) 
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We have s o  f a r  derived the solution of Eq. (5.43). 
Eq. (5.48) for  a three-acce lerometer  sys tem with Uoppler cor rec t ion  in  
accordance with Eqs.  (5.40) can  be s imi la r ly  obtained. 
shown that for  r = const Eq. (5.48) can be replaced to  first approximation by 

The  solution of 

It can  be fur ther  

~ + k , q , - - ; i i - t ~ ~ 6 r = f , ,  d26r , ., d6r (5.157) 

where $> is the right-hand s ide of Eqs.  (5.48) for u = 0: 

dr d f2 = An -Am x -x (Am x r )+  

(5.158) + 3  ~ + k ; I ~ ( A n - - 1 m X ~ + 3 ~ ) - ~ h V , ] .  d r  iir I r  d -  

For k;o t=k ,  the left-hand s ide of Eq. (5.157) coincides with the left-hand 
s ide of Eq. (5.148). 
substituted for f, and k)J$ for  k,. 

The solution of Eq. (5.157) is given by (5.147) with f2 

Let u s  I low turn  to e r r o r  ia t i  ons  of t wo- ,acce le rometer  damped sys t ems .  
F i r s t  we will consider  Eqs .  (5.44). 
of sma l l  c o x ,  C O ~ ,  i.e., the case of slow motion with velocities less than the 
c i rcu lar  velocity a t  a constant dis tance f rom the Ea r th ' s  cen ter  (allowing 
small var ia t ion of this distance).  

W e  have shown in connection with the stabil i ty of the homogeneous 
equations (5.44) that their  projections on the azimuthally free axes  have the 
form (5.114a), and the right-hand s ides  of these equations do not have a 
pronounced effect on the solution. 
(associated with t e r m s  on the right)  is weak for sma l l  oi,, (9,. p .  The effects 
produced by this coupling cannot develop to  a considerable extent during the 
relat ively shor t  t ransient  t ime in effectively damped sys t ems .  Therefore  
the t e r m s  on the right in Eqs. (5.114a) can be dropped in projections onto 
azimuthally f r ee  axes .  This  is analogous to  neglecting the las t  t e r m s  on th? 
left in  the f i r s t  two equations in  (5.131) (as we didinconstruct ing the solution 
(5.147) of Eq.  (5.43)).  

It follows f rom the preceding that in projection onto azimuthally free axes  
Eqs.  (5.44) can  be replaced to  f i r s t  approximation by the equations 

The analysis  will be confined to the case 

The  coupling between Eqs .  (5.114a) 

(5.159) 

The  functions f, and f y  on the right a r e  the right-hand s ides  of Eqs .  (5.44) 
with t o 2 =  0 ( the case  of azimuthally f r ee  axes) .  
can  drop all the small t e r m s  containing coy. wr,  .ur. u y ,  u, in the right-hand 
s ides  of Eqs .  (5.44), re ta ining t e r m s  with GX.  wY. 

T o  f i r s t  approximation we 

W e  then have 

(5.160) 
f, = Inr - Ariyr  - ( :>vhr  + k ,  (AV,, - r Am, , ) ,  

f ,  = A n ,  + AniAr + d, %r + k ,  (Ab',,, + r Am,) .  

The solution of Eqs .  (5.159) can  be obtained f r o m  (5.147) putting Ox. by  for 

Eqs. (5.44) are the e r r o r  equations of two-accelerometer  sys t ems  opera-  
F o r  two-accelerometer  sys t ems  operating in  

the vector 6r and f x ,  f v  for  f,. 

ting in  accordance with (5.39). 
accordance with (5.40), the e r r o r  equations are obtained from the vector  
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equation (5.48) by forming i ts  projections onto the axes  x, r of the co-moving 
system with the axis  r pointing along the vector r .  
have seen at the end of 5.3.1, br is replaced by I r  and the projections of the 

vector $13 a r e  omitted. 

In the process,  a s  ne 

iir Ir 
<if r , 

For slow motion a t  constant distance f rom the Earth 's  center  w e  obtain 
to f i r s t  approximation the following equations in projectionon theazimuthally 
free axes  (making the s a m e  assumptions as  in the derivation of Eqs.  (5.159)): 

where 

(5.161) 

For k;,.,'= k , ,  Eqs. (5.161) and (5.159) differ f rom one another only in the 
t e r m s  containing the factors  k ,  and k ;  on the right.  The most significant 
difference i s  that only the second derivatives l V D x ,  A i ; D y  of the Doppler 
errors  en te r  the functions f: ,f;, whereas  the functions f, f, depend 
directly on ll'Dr, 

S 5 . 4 .  CHANGING THE: NATURAL FREQUENCIES 
OE' A DOPPI-ER-AIDED SYSTEbZ 

5.4.1. Ideal operation equations. E r r o r  equations 

ii'e have established in S5.3 that the f i r s t  group of e r r o r  equations of a 
damped iner t ia l  sys t em is reduced in  the s implest  case to second-order 
differential equations with constant coefficients. 
equation i s  

The cha rac t e r i s t i c  

p2 + k ,  p + I L ) ~  = 0. (5.1 63) 

Its  roots  a r e  

If 41,); > k i .  the roots  of the character is t ic  equation are 

(5.165) 

The  maximum value of is evidently attained for  k ,  = 2or,, being 

k, = 'I'o. ( 5.1 66) 
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F r o m  the second and the third equation in  (5.169) w e  get 

Inserting this resu l t  in the f i r s t  equation in (5.169) together with 
expression (5.42) fo r  fhg, we obtain the vector  equation 

This  is the sought 2rror  equation of a sys t em operating according to  
Eqs. (5.167). For k , = 0 ,  Eq. (5.171) reduces  to Eq. (2.15a), i.e., the e r r o r  
equation of a sys tem operating according to (1.36).  Note that a l terat ion 
(5.167) refers only to the f i r s t  group of ideal operation equations, used to 
determine the coordinates x )I ,  z in tho moving axes 0,xy.z. The second 
group of ideal operation equations which i s  concerned with the direction 
cosines  e,, between the axes :, 11,  - and x. y. z and with the coordinates 
:. 11, C r ema ins  unchanged. 
does not change ei ther .  

according to  Eqs.  (5.167). 
Eqs. (5.168). 

The second group of e r r o r  equations therefore  

We have so far derived the e r r o r  equations of a sys tem operating 
Let u s  now consider  the second case, that of 

Varying these equations and using (5.38), we get  

G = An - Am ;.( v - O X  6.0 +6g + k ; ( 6 A v  + O  ~ 6 . i ~ ) .  

br =& - Am X r  - O X  6r, 

o A V  = 6v +, H x ni x r t - ux (ar 5 - r %) - IV, . 

F r o m  the second and the third equation in  (5.172) we get 

(5.172) 

Inser t ing 6v f rom the second equation in  (5.172), bg f rom (5.42), and 
dividing through by 1- -k i  we  obtain the final fo rm of the e r r o r  equation fo r  
a l ternat ive (5.168): 

(5.174) 
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5.4.2. Analysis of e r r o r  equations 

Let u s  compare Eqs.  (5.171) and (5.174). 

If these coefficients a r e  so chosen that 

They have identical s t ruc ture  
and differ only in coefficients containing k, and k6. 

(5.175) 
1 __ = 1 + k, ,  

1 - k ;  

we a lso  have 

( 5.17 6) k; 

I - k; 
_- - - R,. 

Note that substitution (5.175) reduces Eq. (5.174) to Eq. (5.171). 
changed forms (5.167) and (5.168) of the ideal operation equations a r e  
dynamically equivalent. In what 
follows we therefore  need consider only one of the two equations (5.171), 
(5.174), Eq. (5.171) say.  

Thus, 

They lead to the s a m e  e r r o r  equation. 

F i r s t  let  u s  analyze the homogeneous equation (5.171): 

I If the Ea r th  did not spin, this equation would take the form ( a  = 0) 

For r = const, putting a s  is usual  P/r3=c#. we obtain the solution of 
Eq. (5.178) in the form 

I 

I 
I 

6 r = 6 f l c o s o , v w 2 t  c 
= s s i " o O v ~ f .  (5.179) 

b)o d f  

The r e a l  par t  of the frequency thus changed: instead of o, we now have 
m o m .  

The assumption u = 0 signifies that the relat ive velocity measured by the 
Doppler is equal to the absolute velocity, i.e., the velocity in the axes O,&T& 
which do not rotate  with the Earth.  
m e a s u r e s  the relat ive velocity. 

In fact u f 0 and the Doppler only 
This  explains the origin of the t e rm 

k Q z ( z t X 6 r : )  d in Eq. (5.177). 

This  re la t ive velocity t e r m  is responsible for  the appearance of gyro- 
scopic forces  in the e r r o r  equation, which do not affect the (nonasymptotic) 
stability. Indeed, dot-multiplying Eq. (5.177) by dbrjdt, remembering that 
the vector u is invariable and r = const, s o  that 

I 

i (5.180) a d b r  I dt d f  r d f  

(5.181) 
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which can  be integrated to give 

The nonasymptotic stabil i ty of the system immediately follows f rom this 

In projection on the axes  i,. 9,. Z, the vector equation (5.177) gives th ree  
equation. 

s c a l a r  equations 

(5.183) 

The solution of the third equation in (5.183) is a harmonic oscillation of 
frequency v=o0  \m2. 
the f i r s t  two equations in (5.183) is 

The character is t ic  equation of the system comprising 

The roots  of this biquadratic equation a r e  

11 (5.185) r ,a*&+ au 
P I .  2,3.4 = z 1' .-($I;( I +k2)-k;=- kl ( I  + k2) + k? e' . 

2 4r' 

Since w : > > e ,  we re t a in  only the t e r m s  l inear  in au,'r and obtain the 

approximate roots  

k au 
PI,?,  3 , 4 =  i i ( 0 o  1' 1 t k ?  T + 7). 

Thus, the solution of  the f i r s t  two equations in (5.183) is a superposit ion 

o f  two harmonic modes with frequencies a,) \- and +?. 
Having found the rests of the character is t ic  equation (5.184), we can 

readily construct the general  solution of the homogeneous and the inhomo- 
geneous system (5.188). 

IO), $7 will be s m a l l  compared to 

w .  \ (s ince u is s m a l l  compared to aJ. The  roots  of the character is t ic  
equation (5.184) are not markedly different f rom I ~ O ~  brI f k2. The coupling 
between the f i r s t  and the second equation in (5.183) is weak, and over  sma l l  
periods of t ime w e  can consider the separated equations 

k au If k2 i s  relatively sma l l  (e.g., 

I%*+ ( I  +k*) apg, = 0. 6;j+(l + k?) 0;6q* = 0. 

which a r e  obtained f rom (5.183) taking u = 0. 
The vector equation (5.171) in this case is replaced by 

( 5.1 8 5a) 
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where f stands for  the right-hand s ide  of Eq. (5.171). 
may take 

Since u is small ,  we 

d r  d b V D  p r A r  f= (1 + k2) (An - Am X -) dt - (Am x r )  - k, dt + 3 r'. (5.1 86) 

The general  solution of (5.185a) is obtained in the form 

ar  =6rOcosvf + I 7 d W  sin v f  + 1i f(r) sfnv(f - T)&, (5.187) 

where 

v = 0 0  v m .  (5.188) 

Eq. (5.171) is the e r r o r  equation of a three-accelerometer  sys tem 
operating according to Eqs. (5.167). 
two-accelerometer system, without the z acce lerometer ,  which in the 
unperturbed s ta te  is directed along the radius-vector  r ,  is obtained f rom 
the vector equation (5.171) by taking i t s  projections onto the co-moving 
axes x and y and putting 

The e r r o r  equation of the corresponding 

( 5.188a) I 6.z = Ar (= Ah), 

AV,, = A i  - (V, X 8) Z =  

= A; - (ay - P u,) ax -I- (0, - +'- U,)ay, 

where we may wri te  p / r = a / r .  Since the vector  y is constant in the axes  
O,E,q,&, in which the der ivat ives  in (5.171) a r e  taken, w e  have for r =cons t ,  

(5.189) 

The e r r o r  equations fo r  a two acce lerometer  sys tem a r e  thus obtained in 
the form 

(5.190) 

where f, and f, a r e  expressed  by 
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(5 .191)  

For an  object moving with constant velocity along a parallel, the homo- 
geneous equations (5.190) take the form 

(5.192) 

The charac te r i s t ic  equation of this sys tem reduces  to a biquadratic 
equation 

p4 f [(20: - @;)(I + k*)+ 23, + 2k2 puzOz + 
a2u2 + k; +] P’+[(% - 0;) (1 tk,) - 4 - 

- k , ~ r r l o , ] [ 0 2 0 ( 1 + k ~ ) - - 0 2 - - z q r r . ~ = ] = 0 .  

It can be shown that a t  l eas t  in the region 

0:--0;- 02, > 0 

(5.193) 

Eq. (5.193) has  two pa i r s  of pure imaginary conjugate roots ,  i.e., thesys tem 
is nonasymptotically s table  in this region. 

projections on the azimuthally free axes a r e  replaced to f i r s t  approximation 
by the equations 

In case  of slow motion a t  constant dis tance f rom the Ear th’s  center ,  the 

where 

I f;= - &, Ar + ( I  + kz}Anln, - Am,r - k,ApDx,  

= Ax Ar + (1 + k2) An, + Amxr - k, AV,,. 

( 5.1 94) 

( 5.1 9 5) 

s5.5. DAMPING WITH SIMULTANEOUS 
FREQUENCY CHANGE 

5.5.1. Ideal operation equations. Error equations 

In 55.2 and 55.3 we have considered the damping of an inertial  sys tem 
using external  information f rom a Doppler velocity meter .  
discussed the possibilities of changing the natural  frequencies of inertial  

In 15.4 we have 

225 



Ch. 5 .  DOPPLER CORRECTION 

sys t ems  using Doppler guidance information. 
discussion of damping with a simultaneous change in frequency. 

changing alternatives (Eqs .  (5.167), (5.168)) give four dampediner t ia l  sys tems 
with changed frequency. We will s t a r t  by writing out the corresponding ideal 
operation equations. 

for  the f i r s t  of the four alternatives:  

W e  can now proceed with a 

The two damping alternatives (Eqs.  (5.39), (5.40)) and the two frequency- 

Combining Eqs. (5.39), (5.167), we obtain the ideal operation equations 

(5.196) 

0 I r =  j ( w - m K r + k , A V ) d t + f l  

( A V = V -  v D ) .  

The second aIternative is produced by combining Eqs.  (5.39), (5.168). 
This gives 

r 

0 
(5.197) 

0 i ‘D = f [n - m  x v + g -  k, A V +  k;(AV + m  X AV)]  dt+vOP. 

r = j ( m - m x r ) d t + P  

( A V =  V -  VD). 

The third alternative is obtained from Eqs. (5.40), (5.167): 

n 
r 

0 I v = j (n - m x v +&dt  +vo. 

r = l  [ w - m X r + k ; ( A V + m X A V ) +  k , A V j d t + f l  
(5.198) 

(AV = V - V D ) .  J 

Finally, the ideal operation equations of the fourth sys tem a r e  obtained 
by combining Eqs .  (5.40) and (5.168): 

I 

0 I v =  J” [n  - - m X w + g + k ; ( A V  + m X A V ) j d t + @ ,  

(5.199) f 

0 
r = l  [ o - m x r + k ~ ( A V + m X A V ) ] d t + t O  

(AV V - VD). 
W e  will now derive the e r r o r  equations for  these alternatives.  Varying 

Eqs. (5.196), we obtain the variational equations 

I &I = A n  - o x dv - A m  X v +6g- k , b A V .  
6;=6w--Am x r - o X d r  f Rg3AV. 

6 A V  = b  + (e x u) x r f - u x\(ar f - r+)  - A V ~ .  

(5.200) 

226 



t 5.5. DAllPING WITH FREQCESCY CHANGE 

Eliminating from Zqs. (5.200) f i r s t  6 l V  and then hw and inser t ing for  bg 
i t s  expression from (5.42). we get the vector equation 

dZ a r  -- dt2 t k ,  $++(I  + kd6r + 
+ k 2 - ; i i - ( u X 6 r ~ ) - k k , u X 6 r f =  d 

= (  1 + k l )  ( A n  - Am X % + 3  T ) -  w k  

d dt  (Am Y r )  - k ,  (Am X r )  + _ _  
d U L .  

D l  - + k ,  =[(e X u ) X r q + u  > / r  r: - A V  

- k , [ t8  X u j X r  5 + u  x ~ r %  -AV,J.  (5.201) 

For k l =  0 this eqmt ion  i s  c lear ly  reduced to Eq. (5.43), for  k, = 0 i t  is 
reduced to Eq.(  5.1711, and if both k, = 0 and k,= 0, Eq. (5.201) is reduced to 
Eq. (2.15a). 

Similarly f r o m  Eq. (5.197) w e  obtain the variational equations 

(5.202) 

Inserting 6 A v  from the third equation into the f i r s t  equation in (5.202), 
and taking 6v f rom the second equation, w e  obtain the e r r o r  equation fo r  
the case (5.197): 

' 6r + d - d r  , k ,  L'fir --- __ -I-; 
drc ' I - k; d t  r3(1 - kr )  

- - d c ~ m  r )  -- 1 k Am x r - -[("xu) A x r p + dt 1 - k; 1-4 

+(I x r a S r  -21VD +---[(e d X a) X r  + u x r yl a &  - AV,]. (5.203) 
r 1 1-4 dt 

For k; = 0 this equation reduces  to Eq. (5.43), for k, = 0 to  Eq.  (5.174), 

Let u s  now der ive  the e r r o r  equation fo r  the case (5.198). 
and fo r  k: = k, = 0, to  Eq. (2.1 5a). 

Eqs. (5.198), we get 
Varying 

(5.204) 

To reduce  these equations to the usual  form,  we proceed as  follows. 6 A v  
is inser ted f rom the third equation in  the second and the resul t ing equation 
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i s  solved for  d 6 v / d t :  

d 6 w  - ' d + A m X r - ( l + k 2 ) 6 v +  d t - k ; (  d t  

+ k,[- (e x U )  x r -f + I x (6-t $ --t +) +~v,])+ 
+ & [- (e x a) x r ; + u x ( 6,; - r +) + AV,] . (5.205) 

On the other hand, f rom the f i r s t  equation in (5.204) we have 

=An - Am x v +6g. (5.206) 

Equating the right-hand s ides  of Eqs .  (5.205), (5.206), we get 

k* d r  
6~ = - -2- (An - Am x dt + bg) + 

1 ' t h  

+ 1 ($+Am x r )  -+[(e k x u) x r p - 1 +k, + kl 
a ahr  k' d - u x (br 7 - 7) - AV,] - * [(e x u) x 

(5.207) 

Inserting this dv in (5.206) o r  (5.205) and using expression (5.42) for bg, 

a Ar x r f - u x (6-t -f - r 7) - AV,] . 

we obtain a f te r  some manipulations 

- d2'r dt2 + k : + $ + ( l  + k 2 ) + ( l  - 3 k : f ) b r  + 
+ R, -$(a x 6r:) + k;-$ (a X Or?) = 

= ( 1  + k2) (An - Am X ;ii-+3 q) -= (Am X r )  + d r  d 

+ k 2  -$[(e x u) x r t + u  xr+-~v,]+ 
+ k: {g [(e x a) x r ++a x r 7 - - - ~ ~ , ]  -I- 

a &  

(5.208) d d r  3prAr +x (An - Am X ~ 4 -  7) ). 
F o r  k,  = 0, Eq. (5.208) reduces,  a s  expected, to Eq. (5.48). 

The e r r o r  equation for the fourth alternative is obtained by taking the 

F o r  k ;  = 0 it 
reduces to Eq. (5.171). 

var ia t ions of Eq. (5.199). 

F o r  k : = k 2 = 0  i t  reduces to Eq. (2.15a). 

This  gives 

(5.209) ! bv =An -Am x v - w x 6v + b g +  k i ( b  4V + w X 6AV). 

6; = b v  - Am x r - 0 X b r +  k i (bAV + w X 6 A V ) .  
a &  b AV = bv + (0 X u)  X r f - u x (b F - r 7) - AV,. 

F r o m  the second and the third equation in (5.209) 

$ -!.- (!$+Am x r - 60) + 
a &  ( 5.2 10) 

k: 

+ $ [ - ( e  xu) xr $ + u  x (dr --t 7) +AV,].  
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F r o m  the f i r s t  and the third equation in (5.209) 

d hv 1 dr 
dt I - k 4  dt . 

Comparison of (5.210) and (5.211) gives an expression for 6.o: 

d +v k rir 

U ' i  I - & ; \  df 
6.0 =- -+Am r - --!-I An - A m  ,y - +bg+  

(5.211) 

To complete the derivation of the e r r o r  equations for  c a s e  (5.199), it 
remains  to inser t  this expression in Eq. (5.210) or Eq. (5.211), using 
Eq. (5.42). In e i ther  case  w e  end up with the equation 

d ' h r  k' p dc \ r  1 +L-- +-5 1 - 3 k ; -  b r +  f, 7 I - k ;  r' dt I -k- ( 

(5.213) 

F o r  k; = 0 this equation i s  readi ly  seen  to reduce to Eq. (5.174) and for 
If now both k; = 0 and k: = 0, Eq.  (5.213) kl= 0 it i s  reduced to Eq. (5.48). 

i s  reduced to Eq. (2.15a). 
We have thus found the e r r o r  equations for  the four a l ternat ive s e t s  of 

idealoperationequations (5.196)-(5.199). T h e s e a r e  respect ively Eqs .  (5.201), 
(5.203), (5.208), (5.213). 
we readi ly  see that (5.201) and (5.203) a r e  essent ia l ly  the same .  Indeed, 
their  s t ruc ture  i s  identical. 
responding t e rms .  These  coefficients, in the i r  turn, depend on k,, k2, k;. 
Writing k; for  k ,  i n  Eq. (5.203), and putting 

Comparing these  four  equations with one another, 

They differ only in the coefficients of the co r -  

- k,, 1 k; -- 1+k,. -- 
I-k; - I - k ;  

(5.214) 

we s e e  that Eqs.  (5.201) and (5.203) coincide. The perturbed motions of the 
inertial  sys t ems  based on Eqs .  (5.196) and (5.197) a r e  thus indistinguishable 
f rom one another. Comparing Eqs. (5.208) and (5.213) we s e e  that they a l so  
have identical s t ruc tu re  and under condition (5.214) they fully coincide. T h e  
per turbed motion of sys t ems  operating according to Eqs.  (5.198) and (5.199) 
is thus a l so  identical. 

It follows f rom the preceding that w e  need only consider  one of the two 
equations (5.201), (5.203) and one of the pa i r  (5.208), (5.213). In principle, 
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of course i t  does not mat te r  exactly which equations we choose. 
however, the ideal operation equations (5.196), (5.198) have a s impler  
s t ruc ture  than Eqs.  (5.197), (5.199). 
responding e r r o r  equations, by changing the coefficients k, .  k? and k;. k; in 
Eqs.  (5.196), (5.198) we can change the damping and the frequency indepen- 
dently of each other. 
(5.198) a r e  prefer red  for  pract ical  implementation over the other two a l t e r -  
natives, (5.197), (5.199). 
e r r o r  equations (5.201), (5.208), which correspond to the two s impler  a l t e r -  
natives. 

Eqs.  (5.201), (5.208) a r e  e r r o r  equations of three-accelerometer  inertial  
sys tems.  
can be found f rom the vector equations (5.201), (5.202) by taking their  
projections on the co-moving axes x .  y with the z axis  pointing along the 
radius-vector r .  We should moreover  take b z = A r ( = A h ) ,  and inser t  for 4VD, 
its expression from the second equality in (5.188a). 
equation (5.201) we thus obtain the following se t  of s ca l a r  equations: 

In practice, 

Moreover, a s  we see  from the cor -  

For these reasons the ideal operation equations (5.196), 

In what follows we will therefore concentrate on 

The corresponding e r r o r  equations of two-accelerometer sys tems 

F r o m  the vector 

(5.215) 

The functions f x , -  f, on the right in (5.215) a r e  the projections of the right- 
hand s ides  of (5.201) on the co-moving axes x ,  Y .  Using (5.188a), we write 

(5.216) 
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Clearly,  for  k ,  =I1 Eqs.  (5.215) coincide with Eqs.  (5.190), and for  k?= 0 
they reduce to Eqs.  (5.44). 
to Eqs. (2.28). 

The e r r o r  equa- 
tions for  a two-acce e romete r  system corresponding to the vector equation 
(5.208) a r e  obtained in the s a m e  way. 

If both k, and k, a r e  zero,  Eqs.  (5.215) reduce 

Eqs.  (5.215) correspond to the vector equation (5.201). 

5.5.2. Orthodromic coordinates 

Before proceeding with fur ther  analysis  of the e r r o r  equations of damped 

We will write the ideal 
inertial  sys t ems  with changed frequencies,  let us  consider the part  ieular 
c a s e  of an orthodromic two-accelerometer system. 
operation equations for  this sys t em and take their  variations to obtain the 
e r r o r  equations. 
Eqs. (5.196). 
analogously. 

system without Doppler correct ion a r e  E q s .  (2.23).  
Eqs.  (5.1961, the f i r s t  four equations in (2.23) a r e  replaced by 

LVe will only consider  the c a s e  of Doppler correct ion using 
The c a s e  corresponding to Eqs.  (5.198) can  be t reated 

The  ideal operation equations of an orthodromic two-accelerometer 
In accordance \q.ith 

(5 .2  17) 

The  other  eleven ?elations in (2.23) c l ea r ly  r ema in  unchanged. 
Let u s  now derive the e r r o r  equations of a sys t em functioning in acco r -  

dance with (5.217) and the last  eleven equalit ies in (2.23).  
this  alternative derilration should c l ea r ly  lead back to Eqs .  (5.215). 

bg,. bg, of the nonspherical  gravitation component, w e  obtain the set of 
equations 

The  r e su l t s  of 

Varying the f i rs t  four re la t ions in (5.217) and dropping the variations 

(5.218) 

Let xuy,,zo denote the unperturbed position of the axes  fixed to the iner t ia l  

T h e  axes  xo. yo lie in the plane of the geocentric horizon, with the accele-  
platform. The  axis  zo points along the radius-vector r .  

r o m e t e r s  nx>,  ny, directed along them. The  per turbed position of these axes  



1 b AV,, = - ( r  bay. +ay, Ar + 
+- 0 (u,ez, - u=,e, , ) -au,,a+ro,,y+;B-~V~~j,  

6 AV,= I I- r baxo -ox, Ar + 
+ a VJ,~~, - u2,0,)--au,8+ro,,y-ia - AVDYJ ) 

I + &  

1 + kl 
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6 i - k  . . .  + k , I + q  - + i r e > z , ) b x +  

dr a 
i k :  [~*)x~f iy .  - uI. - r’ + 7 (w.,.u,. - oy,u,,i] by - 
- k: 5 ui. 6y = , . . + k: (hi,r: - rw,, h2J - 

- k :  (ut,, 1; + Am,,) - k? d [ ~ V D , *  + 
\ dt 

+a u1 tj,*---ux OzJI-wz [ W D .  t u  (u, 0 ,  - U J L  ) I \ .  

by$-  . . . t k ,  (5-w: - p u z o >  ) 5 y f k ,  [ w , w y  - 

- - . ~ ~ ~ ( ~ o ~ , u ~ , - o . ~ . u , . )  3 .  i l t  + k l + u , 6 . ; =  

- - + - k ~ ( h Y , - - r w y .  h 2 . ) + k 2 ( m X , 1 i + ;  h,r,)- 
d - k, { ’;iT wD,, + Q (uZ,ey, - U y , e Z , i i  + 

+az, W D ~ ,  i Q (uZ,er ,  - u,,eZsi ). , 

(5.222) 

d bx -+ . . . + k, ;ii; cau,,a - ro,,y - ;p) = 

- - . . . + k2 lbnx,, + vy, h,, - oy, 1; - 
- 01, (- au,,B + r o v , y  - ra) - r 6cJy,1. 

d by - . . . + k,  ;ii ( u u , , ~  - rwr,y + ;a) = 

- - ... i k 2 [ 6 n , , - ~ ~ ; s o Z . + o , ~ ~ ; - t  

i wZe(-- aUz,,a + rw,,y + ;B) + i bO,,l, 

(5.223) 

(5.224) 

, 
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6nxo = [ r  (mxp28 - &J - 2 i 0 , ~  y - 

An, = - I? (%% + GYJ + 2;0,,1 y + 
- [; + r ($- - 

+ [; + r (5 - 

- 02y.)] 0 + Anx9, 

-w?yO)] cz +An,. I 
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0 .  
6% + . . . + k ,  (s - a", - k, 4 u z o m , ~  rg - k2 (ox,oy, - uzg) ra + kzau,,a = 

- - . . . +- k2 (An,, -+ 'axq Amz* - wy. A; + 

- - . . . + kl  (An,, + To,, Amzo + oxo A; - Ao,). 

AoyJ. 

6y + . . . - k, (-$ - a:, - U , ~ O , ~ )  ra + kz (ox,oy, + 4 &) rp + kzau,j = ' (5.229) 



For (t and p we now substi tute 6x, 6y according to (4.32). This  gives 

(5.230) 

Comparing the left-hand s ides  of (5.230) and (5.225) u e  see that they 
differ in one respect  only: in (5.230) thecoefficients before hs and h y  contain 
i:,, whereas the corresponding coefficients i n  i 5.225) contain the expression 
~ + * ) ! ~ ~ , - - - u ) ~ r ~ ~  t .  Now,  t,he angular velocity vector of t h e  Earth,  u, i s  constant 
in the axes  o,;,~.;. . 'Therefore, f rom 

we have 

N z  = - < % I I  u t W" u, . (5.232) 

Thus, using (5.232/, h e  see that the left-hand s ides  of (5.230) and (5.225) 
a r e  identical. The right-hand s ides  a r e  a l s o  identical, s ince a s  w e  know 

1tri = - Acs~,. , A m ,  = - Am,, , Amz = - . (5.233) 

Comparison of E y s .  (5.225) and (5.230) shows that Eqs.  (5.222) and (5.223) 
coincide. 
accelerometer  sys t em obtained by a direct  variational technique f rom the 
ideal operation equalions (2.23), (5.217) a r e  exactly identical to the equations 
obtained from the vector equation (5.201) of a gene ra l  iner t ia l  sys t em.  

Th i s  means that the e r r o r  equations of an orthodromic two- 

5.5.3. Stability analysis  

Consider the vector differential  equations (5.201), (5.208). A s  w e  have 
seen  in 5.5.1, these a r e  the e r r o r  equations of a three-accelerometer  
inertial  sys t em with Doppler correct ion according to the ideal operation 
equations ( 5.196)- ( 5.199). 

i s  to ensu re  asymptcdic stabil i ty of the s t a t e  corresponding to the ideal 
operation equations of the sys t em.  
e r r o r  equations (5.201), (5.208) go to  z e r o  with t ime, i.e., the t r ivial  
solutions of the homogeneous equations (5.201), (5.208) must  be stable.  

Let u s  investigate the stabil i ty of the homogeneous equation (5.201) 

- f k ,  G- + L ( l  + k 2 ) 6 r  + k 2 x ( a  X br $) - k,u X br  5 = O  d :  5r 

The  main purpose of Doppler correct ion,  a s  we have s e e n  in the preceding, 

Th i s  r equ i r e s  that the solutions of the 

d 
(5.234) d t  r3  

for  r = const.  
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Taking i t s  projections on the fixed-orientation axes O , ~ t &  (the axis  O& 
points along the spin vector u of the Earth)  and noting that 

(I* m* = u,,. = 0. u;, = u = const, (5.235) 

we obtain the sca la r  equations 

(5.236) 

ai. + k, ai, + ~ : ( l  + kz)  6:. - 

66. + k ,  a i *  + a; (1 t kz) q + 
au . au - k 2 r  6 ~ +  + k ,  7 611. = 0. 

au + k, f 6& - k ,  7 = 0,  

&+k1&+$(1 f k z ) M , = O .  

If r = const, the coefficients in Eqs.  (5.236) a r e  constant. The third 
equation in (5.236) is separated.  I ts  solution is obvious. For  k ,  > 0 and 
1 .t k, > 0, the solution of this equation goes to zero  with time. 
te r i s t ic  equation of the remaining fourth-order system (the f i r s t  and the 

The charac-  

second equation in (5 .236))  is 

p 4  + 2k ,p3  + [ 2 4 (  1 + k2) + k: + k: 91 p 2  + 
+ 2k, Fi(1 + k , ) - k z  q] p + ~ i ( 1  +k,)'+ k:?=O. 

The stability conditions a r e  provided by Hurwitz 's  inequalities: 

2k, > 0. 

2 k , [ a : ( l  f k 2 ) + k ~ + k z ( l  +k,)%]>O. 

> 0. 

> 0. 

a W  a W  
4k: ( 1  + kz) (ai - (ki + k: 

6$(l + k,)' + k: 

Since 

wee s e e  that for  

k 1 > 0 *  l + k z > O  

conditions (5.238) a r e  always satisfied. 

(5.237) 

(5.238) 

(5.238a) 

(5.239) 

The motion described by vector equation (5.234) is thus asymptotically 
stable for  r = const. Doppler correct ion of a three-accelerometer system 
using Eqs.  (5.196), (5.197) thus ensures  asymptotic stability for  any motion 
of the object a t  constant distance f rom the Ear th ' s  center .  
a lso applicable to the motion of a satell i te in a c i rcu lar  orbit. 

This  resul t  is 

Let us  consider Eq. (5.208). The corresponding homogeneous equation i s  

236 



f 5 .5 .  D.4'1PING \\'ITH FREOLESCY CtI.4CiGE 

If the object moves a t  constant distance f rom the Earth 's  center ,  w e  have 
= 0, p r ' = w t =  const, and projecting Eqs.  (5.240) onto the fixed orientation 

axes 5.. q,, 6 ( the  ax i s  6 points along the Ea r th ' s  spin axis) we obtain the 
following set of differential equations with constant coefficients: 

(5.241) 

is self-evident. 
(5.241) i s  a fourth-degree equation 

The  cha rac t e r i s t i c  equation of the f i r s t  two equations in 

Applying Hurwitz's c r i t e r ion  to this equation we conclude that, in virtue 
of inequality (5.238a), the r e a l  pa r t s  of the roots  of the cha rac t e r i s t i c  equa- 
tion a r e  negative when k ;  i 0 and I f k2 > 0. Inertial  s y s t e m s  with Doppler 
correct ion using Eqs.  (5.198), (5.199) are thus asymptotically s table  when 
conditions (5.242) art: satisfied.  
analogous to conditions (5.239). 

Let u s  now consider the stabil i ty of two-accelerometer Doppler aided 
sys t ems .  
vector equations (2.201). (2.208) on the co-moving axes  x, y with the z axis  
directed along the radius-vector r .  
The stabil i ty of equations which follow from the vector equation (2.208) c a n  
be analyzed along the s a m e  lines. 

In accordance with (5.215), the homogeneous e r r o r  equations of a two- 
acce le romete r  inertial  sys t em in this c a s e  are  

Conditions (5.242) a r e  c l ea r ly  completely 

The  corresponding e r r o r  equations a r e  obtained by projecting the 

W e  will only consider  Eqs.  (2.201). 

6.; +- k, h i  + [( 1 + k , )  1 f - $1 - o;I - 

- k2 up21  hx + [ ( 1 + k?) o - 0, - 

(5.244) 

If the motion of the object using the iner t ia l  sys t em is quite general ,  the 
coefficients in Eqs.  (5.244) are general  functions of t ime. Exact stability 
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analysis  of Eqs.  (5.244) in this ca se  involves insurmountable mathematical  
difficulties, s ince the modern theory of differential equations has  no 
suitable methods to cope with the complex situation. Exact stability 
analysis  of Eqs.  (5.244) is therefore  possible only for motion with constant 
velocity along a parallel, when the coefficients of these equations a r e  
constant. The sufficient conditions of stability can also be determined for  
s low motion c lose  to the Ea r th ' s  sur face  ( a t  velocities much l e s s  than the 
c i rcu lar  velocity). 

For  motion with constant velocity along a parallel, we have 

6; + k16i + [( 1 + k2)  ("5 - q) - 

6Y+k,63+[(1+ k,)O: - 4 - 4: U,%] 6Y + 

- m: - k, u,w,] bx - k, (0, - 4 uz)  by - 
- ( 2 0 , + k 2 ~ u , ) b y = 0 .  

+ k l ( o , - $ u ,  b x +  2 0 , + R 2 ~ u I ) b ~ = 0 .  , 

U, = const, w, = const, r = const, 
u X  = w, = 0. uy = const. 

(5.245) 

(5.246) 

(5.250) 
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Using these symto l s ,  we wr i te  (5.246) in the form 

T h e  charac te r i s t ic  equation of this sys t em is 

v; her  e 

IIurwitz's conditions for  Eq. (5.252) a r e  

(5.251) 

(5.252) 

(5.253) 

(5.254) 

LVhen the f i r s t ,  third, and fourth inequalities are satisfied,  the second 
condition is satisfied automatically, and it is therefore  of no significance. 

The f i r s t  condition in (5.254) implies that 

I ; ,  , > 0. (5.255) 

and is self-evident. 

(5.253) in t e r m s  of u . ,  takes the fo rm 
The  third conditicvn in (5.254), with the coefficients 6,  expressed  f rom 

ki 2 (ki 1 u;l [?a( -- uI f ?u i u n  - a ;  11  A uil --, 0. (5.256) 

Inserting the express ions  fo r  u , .  u2. a % .  a* f rom (5.250), we get 

Finally, the third condition in (5.254) gives the inequality 

( 1  ~ k ~ ~ ~ ( ~ , ~ ~ , - ~ ~ ~ ~ ~ ~ ~ - ( . ) J  Y -d' 2) + 
-!- k, ( I  + k2) w-. 10; - -: 11; 1 3.); - 203 - a;,) + 

(5.258) tl * + f k i  + k + i )  1 - u r ) -  > 0. 

Inequalities (5.255), (5.257), (5.258) in  fact define (together with the 
second inequality in (5.254)) the reg ions  of asymptotic stabil i ty of the aided 
inertial  sys t em for  the c a s e  of motion along a parallel .  
inequalities reduce  to inequality (5.107): if together with k ,=  0 we a l so  put 
u,= 0, these  inequa1i:ies coincide with (5.1 1). 

(5.257), (5.258) are c lose  to the stabil i ty regions determined assuming u,= 0. 

For k,= 0 these  

Since u, is s m a l l  compared  to o,, the stabil i ty regions defined by (5.255), 
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Under this assumption, taking k, > 0 and 1 + k2 > 0, we wri te  inequality 
(5.257) in  the fo rm 

Inequality (5.258) is s imilar ly  writ ten in the form 

(5.260) 

FIGURE 5.4  

Inequality (5.259) partitions the a’,. o: plane into three regions.  The 
boundary curve of these regions (Figure 5.4) is the hyperbola 1 (only one 
branch is shown in the figure) 

The asymptotes of this hyperbola are the l ines 

(5.261) 

(5.262) 

Inequality (5.259) corresponds to the region between the branches of the 
hyperbola (5.261). Since one of the branches lies entirely in the lower half- 
plane .: < 0, we a r e  left only with the region between the branch 1 and the 
axes a’,= 0, a’, = 0. The physical branch of the hyperbola is closest  to the 
ax i s  o : = O  at  the point A [ 3 y = 4 4 .  c$=m:(1+k2)]. In F igu re  5.4 the hyperbola 
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(5.261) is shown for  the c a s e  

Inequality (5.260) is a l so  satisfied by another hyperbola (2  in Figure 5.4) 

with the asymptotes 

(5.264) 

(5.265) 

The  region between the branch of the hyperbola (5.264) lying in the f i r s t  
quadrant and the axes  ~5 = 0, 0; = 0 sat isf ies  inequality (5.260). 
pas ses  through the point ( w f =  0, d = 013 and it i s  c losest  to the axes  y'= 0 at  
the point B with the coordinates 

This  branch 

(5.266) 

It meets  the hyperbola (5.261) at the point C [;',< 404, &:<o;(l t k , , ] .  In 
Figure 5.4 this branch is drawn for  the coefficients k ,  and k, f rom (5.263). 

The stabil i ty region of Eqs .  (5.246) corresponding to conditions (5.259), 
(5.260) is thus the region delimited by the segment of the s t ra ight  line Q $ =  0 
between the points tu:, = 0, a); =(I$, the part  of the hyperbola ( 5 . 2 6 4  between 
the point (io:= 0, a$ =.(*):) and the point C (4, qj, the pa r t  of the hyperbola 

For k ,  = k: = 0 this region coincides with the region of nonasymptotic stabil i ty 
in F igu re  2.1. 

5.261) f rom the point C (;:. (;:J to the asymptote = 2 4  and the ax i s  w:, = 0 .  

For a given k,, the stabil i ty region i s  the largest  for  

(5.267) 

when the tangent to the hyperbola (5.264) a t  the point (of=o;.0;=0) i s p a r a l l e l  
to the axis  of = 0 .  

We have so f a r  considered the stabil i ty of a two-accelerometer Doppler- 
aided sys t em moving with constant velocity along a parallel .  
one of the possible modes of motion, but it i s  highly r e s t r i c t ive .  In gene ra l  
the object moves a t  an a r b i t r a r y  angle to the paral le l  with a variable velocity. 

we have noted at the beginning of this section, exact stabil i ty analysis  mee t s  
with prodigious mathematical  difficulties. 

However, if w e  a s s u m e  that the velocity of the object is s m a l l  compared 
to the c i r cu la r  orbit  velocity, we c a n  obtain a highly powerful approximate 
solution of the problem, which leads to the sufficient conditions of stabil i ty 
of Eqs. (5.244). 

Th i s  is 

In the general  c a s e  the coefficients in Eqs .  (5.244) a r e  var iable  and, as  
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Consider Eqs. (5.244) in projection onto the azimuthally f r ee  axes .  T o  
th i s  end we take oz = 0. This  gives 

( 5.2 68) 

T o  simplify the mathematics, we take r = const. Let o ; = k  and subst i -  

a X = x , ,  ~ X = X , ,  b i = y l ,  a Y = y ,  (5.268a) 

rs 
tut ing the var iables  

w e  wri te  Eqs. (5.268) in  Cauchy form: 

Here  

(5.269) 

where 

Eqs. (5.269) in  normal  coordinates take the fo rm 

1 -  -_ db' -Ebl -T-;-lsinul, 

3- =I Y - - 'PI cos ul. 

-_  db2 - Eb2 - 

dt 

d f  biv 

dt 

dt 

1 -  

1 -  
'p, sin u,. 

du2 - I - - - v -. - (p2 cosu1. bav I 

(5.270) 

(5.272) 

(5.273) 
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Eqs. (5.273) on the right contain the functions GI and <?. By (5.270), 

(5.274) 

( 5.27 5) 

(5.276) 

(5.277) 

(5.278) 

(5.279) 

If I* is the absolute velocity of the object, we c l ea r ly  have Q=v, ' r ,  s ince  

Finally, for  us and u y  we have 
r = 0 .  

~ , = u , , s i n ~ .  u Y O  = u  c o s x .  u , , = u ~ f u ~ ,  (5.280) 

where c l ea r ly  uo is the projection of the Ea r th ' s  spin vector  PI on the 
horizontal  plane. 

dU,'dt in the fo rm 
Using (5.278), (5.279), (5.280), we wr i t e  Eq. (5.277) f o r  the der ivat ive 

1 .  + cos2tF1 sin2$2sin 2uz --_sin 2 215, s in  2q2 siniu, + uz)) + 
+- 9 ( (k, - Ek,) uz + k,Qu, s i n  (J'?-x) ) s in  (u2-u l )  sin 2$,] '. . (5.281) I 
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which f o r  k, = 0 reduces to condition (5.128) if we note that r- 1 and write 
in (5.128) c = 0. 

k ,  and k, so  a s  to ensu re  asymptotic stabil i ty of the inertial  sys t em for any 
law of variation of the velocity. 
is provided by the factor 2. 

Condition (5.288) for given r and 0' enables us to choose the pa rame te r s  

A measu re  of damping of the initial e r r o r s  
Indeed, by (5.283), 

where i s  the initial value of the function U. 
From the definition (5.275) of U ,  we get 

In conclusion note that the stability condition (5.288) was derived for  the 
c a s e  r 'const, i .e.,  general  motion at  constant distance f rom the Ea r th ' s  
center .  
sufficient condition of asymptotic stability of an object with a vertical  dis-  
placement component. Then, this condition will include the maximum values 
of };I and I r - r * / ,  where r') i s  the constant value of r near  which the object 
moves. A s i m i l a r  r emark  applies to the stability of three-accelerometer  
Doppler-aided inertia.1 sys t ems ,  which were previously treated for the 
c a s e  r = const. 

It i s  readily seen  that the s a m e  method can be used to find the 

5.5.4. The solution cif e r r o r  equations. The effect of 
instrumental  e r r o r s .  Choice of correct ion coefficients 

Consider the homctgeneous equation corresponding to the vector equation 
(5.234). 
pointing along the Ea r th ' s  spin axis),  Eq. (5.234) gives three s c a l a r  equations 
(5.236). 
(5.236) a r e  constant. 
obvious. 
found by the method cf variation of the constants in the general  solution of 
the homogeneous equation. 

comprising the f i r s t  and the second equations in (5.236), w e  need the roots 
of the character is t ic  equation (5.237). 

When projected onto the fixed-orientation axes  O,:.q.Z, (the axis  c. 

For r = const the coefficients of the l inear differential equations 
The general  solution of the las t  equation in the set is 

The  solution of the corresponding inhomogeneous equation can be 

To construct the getieral solution of the homogeneous fourth-order system 

u:a' 
Since a:>?, sufficiently accu ra t e  approximations to the roots of 

Eq. (5.237) can  be obtained by a method s imi l a r  to that applied to determine 
the roots (5.143) of Eq. (5.68). 
(5.137) i s  

In our  case the auxiliary cubic equation 

( 5.29 1) 
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The following approximate expression for the root y; of this equation is 
read i ly ob ta ine d: 

k?a?u' , k' .) 

P i = ~ - - ~ O O ( l  +k2)-* [k;+4(1  f k 2 ) ] ,  (5.292) 

where a? = 46t$ ( 1  + k p )  - 

root in powers of s. 
usually 

. 
This  expression constitutes the f i r s t  t e r m s  in the expansion of the exact 

We will only u s e  the z e r o  and f i r s t  t e r m s  of this expansion. Since 

a?- 4 4 (  I + k.) - ki >> F. (5.293) 

Eq. (5.292) ensu res  satisfactory accuracy in the calculation of y,. 

roots  of two quadratic equations 
Thus, to obtain an approximate solution of Eq. (5.2372, w e  r equ i r e  the 

~ ? + b I p  + C I  = 0. p2+b2p + c*= 0, (5.294) 

whose coefficients a r e  expressible in t e r m s  of the coefficients of Eq. (5.237) 
and the approximate root y; .  
written in  the form 

By (5.135), (5.136), these coefficients can be 

where 

Solving the f i r s t  of the two equations in (5.294), w e  obtain two roots  of 
the character is t ic  equation (5.237): 

Similarly, f rom the second equation in (5.294) we get 

For  k2= 0 the roots  (5.295), (5.295a) of the character is t ic  equation 

Once the roots  of the character is t ic  equation have been determined, w e  
coincide with the corresponding expressions in (5.143). 

proceed in the usual way to construct the general  solution of the homogeneous 
system comprising the f i r s t  two equations in  (5.236) and thence the general  
solution of the corresponding inhomogeneous system. The result ,  however, 
is too unwieldy for  pract ical  purposes.  
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The solution can be simplified in the following way. 
I t  follows from the par t icular  form of the roots (5.295), (5.295a) of the 

charac te r i s t ic  equation (5.237) that when inequality (5.293) i s  satisfied, these 
roots  a r e  c lose  to the expressions 

i.e., they a r e  c lose  to the roots  of the charac te r i s t ic  equation 

p' + k,P + W i ( l  +k2) = 0. 

which corresponds to a second-order vector  equation 

(5.295b) 

(5.296) 

This  means that, being smal l  compared to k, and %, the coupling 

between the f i r s t  and the second equation in (5.236) i s  weak. 
system, t h e  coupling effects cannot develop to a considerable extent during 
t h e  damping t ime of I.he initial e r r o r s .  

f i r s t  approximation with the equation 

In a damped 

Thus,  when inequality (5.293) is satisfied, Eq. (5.201) can be replaced to 

(5.297) 

w h e r e  f i t ,  stands for  the right-hand s ide  of Eq. (5.201). 
The  general  solution of Eq. (5.297) can be wri t ten in the form 

where E and v a r e  given by the last  two equalities in (5.295b), and differen- 
tiation and integration a r e  ca r r i ed  out in the O,kxL, axes .  

approximation, neglecting on the right in Eq. (5.201) t e r m s  which contain 
the factor  u, w e  may wri te  

In (5.298), f ( t )  stands for  the right-hand s ide  of Eq. (5.201). To f i r s t  

The admissibility of this simplification of the function f i t )  i s  evident f rom 
the following considerations. 
inertial  sys tem with Doppler cor rec t ion  is the s a m e  a s  for an autonomous 
system. According to (1.94), the e r r o r s  ex. 8,. 8, determined by the equa- 
tions of the second group lead to position errors 6r =R, x r. If the position 
i s  to be determined to within 1 km, w e  should have lel ,<l.5 * rad.  Then 

X n) X? 1 < 7.4 1 O-' m /  sec .  I zz X r  I r? is of the s a m e  order of magnitude 

The second group of e r r o r  equations of an 

aAr . 
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for  Ar < 1 km. 

Doppler e r r o r  AV, in the right-hand s ide of Eq. (2.201). We have I(0Xu)x 

A r : + u X r F l <  0.15m/sec ,  whereas  the Doppler e r r o r  is generally of 

the o rde r  of 1 m /  sec .  Hence it follows that t e r m s  with I( on the right in 
Eq.  (5.201) a r e  indeed ignorable. 

Consider the solution (5.298). If the function f constitutes a constant 
vector b ,  the steady-state e r r o r  is 

The e r r o r  (ex u ) X ? + u X t $  is added to the instrumental  

(5.300) 

Let us  compare this e r r o r  with the steady-state e r r o r  (5.152) of a 
damped system whose frequency has  not been changed. If 

A n - A t n x G + 3  %=u,, (5.301) 

where a, is a constant vector, we have b,=u , ( l  +k,). 
(5.1 52), 

Hence, by (5.300), 

brr=?L-- b 1  . (5.301a) 4 - &l+Rz) 

The steady-state e r r o r  due to a constant instrumental  e r r o r  (5.301) is 
thus the s a m e  in both c a s e s  and is independent of the choice of the co r rec -  
tion coefficients k,, k,. 

The right-hand s ide (5.150) of the e r r o r  equation of a damped sys tem 
with unchanged frequency has  one additional t e r m  

k, (AV, - Am x r )  - ;iT(Am d X r ) .  (5.302) 

and the right-hand s ide (5.299) of Eq. (5.297) contains the additional t e r m  

_-  d d A V D  (5.303) dt (Am X r ) + k ,  (AV, -Am x r )  - kZ df. 

Let 

-- d~ d (Am x r )  -Am x r = a3 = b2. (5.304) 

where a2=b2 a r e  constant vectors .  
respect ively have 

From (5.152) and (5.300) we then 

(5.305) 

i.e., the s teady-state  e r r o r  f rom instrumental  e r r o r  (5.304) is less by a 
factor  of ( 1  +kd in the sys tem with changed frequency. 
applies to the instrumental  e r r o r  k, AVD.  

A s imi l a r  conclusion 
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In a frequency-changing system, the right-hand s ide a l so  contains a t e r m  
d I V ,  

k , - ; I I - .  If d = b B , ,  the steady-state e r r o r  in this case is ,it 

Since usually 2% 1, we have 

b 6r = 2.. 
% 

( 5.3 06) 

(5.307) 

Let u s  now consider  Eq. (5.208). The  corresponding homogeneous 

The  solution of the las t  of these equations is 
equation (5.240) projected onto the axes E,. TI.. 
differential  equations (5.241). 
obvious. 
compris ing the f i r s t  two equations in (5.241) can  be found by the s a m e  
method as  we have applied to determine the roots  of Eqs. (5.68), (5.237). 
Since u is sma l l  compared to (u,,, the roots  are a l so  found to be c lose  to the 
expressions (5.295b), where k ,  should be replaced with k:cd. 
between the f i r s t  two equations in (5.241) is seen  t o  be insignificant invir tue 
of the smal lness  of L ,  as in the c a s e  of Eq. (5.236). Therefore ,  Eq. (5.240) 
can  be replaced to f i r s t  approximation with Eq. (5.296), where k, should be 
replaced with k;w;. Correspondingly, instead of Eq. (5.208) we may take 
(putting u = 0, r = const) 

gives for  r = const the l inear  

The  roots  of the charac te r i s t ic  equation (5.243) of the sys tem 

The  coupling 

=L dbr + & ( I  f k 2 )  6r = f  (t). (5.308) 
dt l  ' dt  

where now 

(5.309) 

For r =cons t  and k ; & = k ,  the left-hand sides of Eqs.  (5.297) and (5.308) 
coincide. Thus, to f i r s t  approximation, the four a l ternat ives  (5.196)-(5.199) 
are equivalent i n  the e r ro r - f r ee  case. 

is evidently Eq. (5.298) with f ( t )  substituted for  f ( t 1 .  
of Eqs.  (5.297) and (5.308), i.e., the vector  functions f t t i  and f ' ( t )  are  
significantly different f rom each other. The  main distinction between 
sys t ems  (5.196), (5.137) and sys t ems  (5.198), (5.199) is therefore  the 
different effects of the instrumental  e r r o r s  and external information e r r o r s  
Av, and Ar on the operational accuracy.  
significance in  practice. Thus, for  instance, if the main  e r r o r  i s  a constant 
Doppler deviationlv,, it is advisable to  prefer  sys t ems  (5.198), (5.199), 
s ince  the right-hand s ides  (5.309) of the corresponding e r r o r  equations 
contain only the t ime der ivat ives  of AV,. 
not lead to any sys tem e r r o r s .  

The  genera l  solution of the inhomogeneous equation (5.308) for  r = const 
The  right-hand s ides  

Th i s  point i s  naturally of decisive 

The  constant component thus does 
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Eqs.  (2.201), (2.208) whose solutions have been discussed so f a r  a r e  the 
e r r o r  equations of three-accelerometer  aided systems.  The corresponding 
equations for  two-accelerometer sys tems a r e  obtained by taking the projec- 
tions of the vector equations (2.201), (2.208) on the co-moving axes x. y,  
with the z axis  directed along r .  
(5.21 5). The corresponding homogeneous sys tem is (5.244). 

noted, the coefficients of (5.244) in the general  case  a r e  some functions of 
time. 

The complete exact solution of the e r r o r  equations can  be found only for  
motion with constant velocity along a parallel, when Eqs. (5.244) reduce to 
a system of differential equations with constant coefficients, Eqs.  (5.246). 
If a,. oy, mz a r e  smal l  compared to coo, the approximate solution of the 
character is t ic  equation (5.252) of Eqs .  (5.246) can be obtained by the s a m e  
method a s  above, in connection with Eqs.  (5.68), (5.237). 
sufficiently small ,  the roots  of the charac te r i s t ic  equation (5.252) a r e  c lose 
to expressions (5.295b). 
equation in (5.246) is weak, and we can thus consider in the first approxi- 
mation two independent second-order equations which a r e  obtained from 
Eqs.  (5.246) when we take 

From Eq.(2.201) we then obtain Eqs.  

The s t ruc ture  of these equations is fairly complex. A s  we have already 

If fi),, oY, o, a r e  

The coupling between the f i r s t  and the second 

oy = 0, = u, = 0. ( 5.3 10) 

Note that for motion along a paral le l  with velocities substantially less 
than the c i rcu lar  orbit velocity, w e  always have (or(<<%. 
(o,I may prove to be close to o,, o r  it may even exceed o, if the latitude of 
the corresponding paral le l  is sufficiently high. This  is a consequence of 
the fact that Eqs.  (5.246) a r e  written in projections on the x y z  axes, with 
the axis  y pointing northward. 
moving axes wyz with the axis  z directed along r and z e r o  spin around this 
axis  (oz = 0, i.e., azimuthally free axes) ,  this difficulty can be avoided. 

The e r r o r  equations of the sys tem projected onto the azimuthally f r ee  
axes  take the form (5.268). H e r e  o, i s  omitted f rom the coefficients. The 
components ox, oy. u x ,  uy,  uI ( in  this ca se  they a r e  variable even for  motion 
along a parallel) a r e  substantially l e s s  in magnitude than oo for  slow motion 
(1000-2000 m /  sec) .  
equal to zero.  
ca se  of slow motion can thus be wri t ten in the great ly  simplified form 

At the s a m e  t ime 

If we project the e r r o r  equations on the co- 

Therefore ,  to f i r s t  approximation, they can  be taken 
Eqs.  (5.215) projected onto the azimuthally f r ee  axes  in the 

(5.31 1) A i  + k, 6.; + (1 + k2) (0; bx = f, ( t ) .  

ai; + k, b>+ (1 + k2) u: bY = f y ( t ) .  

where to f i r s t  approximations we may take 

} (5.312) f , ( t )  = (1 + k2) An, - r Am, + k ,  (AVDx - r Am,) - k,  AirDx,  

f, ( t )  = (1 + k2)  An, + r Am, + kl(AVDy + r Am,) - k, bliDy; 

these functions a r e  obtained f rom the right-hand s ides  (5.216) of Eqs.  (5.215) 
if we put ~ , = ~ , = U , = U , , = U , =  0. 

Eqs.  (5.311) are the simplified form of Eqs.  (5.215), which in their  turn 
are the projections of the vector equation (5.201) on the horizontal axes  x, y .  
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We can s imilar ly  obtain the simplified equations corresponding to the vector 
equation (5.208) of a two-accelerometer inertial  system. 
form 

They have t h e  

(5.313) 

where 

For k , ' , ! , i T T k r ,  the homogeneous equations (5.311) and (5.313) coincide. The  
roots  of the corresponding character is t ic  equations a r e  (5.295b). 
solution of Eqs.  (5.311), (5.313) is writ ten in the form (5.298), where hr is 
replaced with I!X or by, respectively, and the vector function f i s t  i s  r ep re -  
sented by the s c a l a r  fcnctions . f r i ~ f .   IT). J ' ; (T I ,  ].;IT,. 

N o t e  that the functions ,f+ f. and ,f,:., i ,  differ only in t e r m s  whichcontain 
the f ac to r s  k ,  and k; .  
difference in the solutions of Eqs.  (5.311) and (5.313) i s  associated with this 
diss imilar i ty  in the functions .fr, f,. and f,:. f.:. 

Eqs.  (5.297), (5.3081, (5.311), (5.313) a l l  have the s a m e  character is t ic  
equation 

The 

The t e r m s  with k, a r e  identical in both cases .  The  

p ' + k , p + ( l  +-k:)(LA=O (5.31 5) 

with the roots 

T h e  roots  (5.316) of the character is t ic  equation (5.315) constitute one of 

The following table cha rac t e r i zes  the values of these roots  as 
the main computational pa rame te r s  of a n  inertial  system with Doppler 
correction. 
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a function of the correct ion coefficients k ,  and k2. 
of the t ime constant 

The table l i s t s  the values 

1 2  (5.317) 
‘ c = _ = 7 ; ;  

T = E =  4 n  

and the period of oscillation 

v 1 / 4 m : ( 1 + k 2 ) - k ;  

The second row under k, gives the degree of damping 

j =  kt 
‘2,, 1 

(5.318) 

The choice of the coefficients k ,  and k, is intended to ensure sufficiently 
effective damping, i.e.,  a sufficiently smal l  time constant t, with minimum 
contribution from instrumental  e r r o r s .  The period T generally should be 
made a s  large a s  possible, so  a s  to preserve  the low-frequency filtering 
propert ies  of the system. 

above table is practicable only in the region where the simplified solutions 
(5.297), (5.308). (5.311), (5.313) a r e  valid, i.e., in a region where 
of the form (5.293) a r e  satisfied. Otherwise, for  a three-acceler 
system we have to consider Eqs.  (5.237), (5.243), and not the simplified 
character is t ic  equation (5.31 5). 
introduce additional stability conditions of the form (5.288) for  the total 
e r r o r  equations. 

governed by the random charac te r  of the instrumental  e r r o r s  and pr imari ly  
the random charac te r  of the Doppler e r r o r s .  
i s  considered in Chapter 7.  

In conclusion note that the choice of the coefficients k ,  and k2 using the 

In two-accelerometer sys tems w e  should 

The actual choice of the correct ion coefficients k ,  and k, i s  generally 

The effect of random e r r o r s  

§5.6. SOME ADDITIONAL REMARKS O N  
DOPPLER CORRECTION 

5.6.1. 
stabilized platform 

Correct ion techniques using a gyroscopically 

Consider a two-accelerometer inertial  system using a gyroscopically 
stabilized platform (or  a controlled gyroframe).  The unperturbed axis  z of 
the platform i s  directed along the radius-vector r ,  and the acce lerometers  
a r e  se t  along the axes x and y ,  which in the unperturbed s ta te  lie in the 
plane of the geocentric horizon. We will consider the case  of anorthodromic 
system, without loss of generality. The ideal operation equations of the 
sys tem without Doppler cor rec t ion  a r e  Eqs.  (2.23). 

The alternative Doppler cor rec t ion  techniques considered in the previous 
sections were  based on Eqs .  (5.196)-(5.199) derived for  an a rb i t r a ry  orien- 
tation of the inertial  platform. 
Eqs.  (5.196)-(5.199) affected only the f i r s t  four equations in (2.23).  

In application to an orthodromic system, 
The 
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other  equations did not change, a s  we see, e.g., f rom (5.217). In par t icular ,  
the fifth and the s ixth equation in (2.23) used in determining the coordinates 
S and t from known cd., and cd:; were not affected. The eleventh, twelfth, and 
thirteenth equations in (2.23) did not change either:  these equations a r e  used 
i n  forming the control  torques of the s table  platform (gyroframe).  

T h e  fifth, sixth, eleventh, twelfth, and thirteenth equations in (2.23) 
nevertheless contain t h e  projections (e!.r, (I)! of the absolute angular velocity 
o f  the platform axes  X Y Z .  Since r y r  a r e  co-moving axes,  i.e., the unper- 
turbed ax i s  z points along r ,  and oy can be expressed in t e r m s  of V x ,  L ‘ y ,  
u Y .  id,. Clearly,  I’,r and L’, are provided by the Doppler velocity me te r .  We 
thus have a possibility of Doppler correct ion if we introduce additional 
t e r m s  with (q!,c,ce)y in the equations fo r  S and z and in the equations for  the 
control torques.  
,.ty we take 

Let ‘is examine this possibility in some  detail .  F o r  u), and 

where 1 L r r  and lVu arc: given by the last  four equalities in (5.217). 
these expressions for  oI and coy in the equations for  the control torques, we 
obtain 

Inserting 

(5.321) 

The f i r s t  two equations in (2.23) a r e  replaced with Eqs.  (5.49) using (5.50). 

Let u s  der ive the e r r o r  equations for  this case. 
The  other  equations in (2.23) a r e  not changed. 

Taking the variations of 
Eq. (5.49) together with the third and fourth equations in (2.23), dropping the 
sma l l  variations bg.r.  h ~ . , ,  and putting h r = S r ,  we get 

(5.322) I = bnx - mZ b , ~ , ~  - rox  &J, - k 1 6  
. .  

-2td, > , r - r b t ) , c  + ( - ~ X + o ~ [ , ) ~ ) ~ r - ~ i r & J . ~ ) =  dt 

- - an, - my 60, - ro, boy - k,b 

The  unperturbed position of the axes  wpz fixed to the platform i s  designa- 
ted a s  before by x , , ~ ~ t , ~ .  The deviations of the platform f rom i t s  unperturbed 
position are specified : ~ y  the s m a l l  angles a.  p. y according to the ma t r ix  of 
direction cosines  14.22). 
(4.8), (4.12). 

They should be expres-  
s ed  in t e r m s  of u, s’. i. a .  p. y .  
purpose a r e  inapplicable in this ca se ,  s ince we changed the expressions for 
the control  torques (replacing (2.23) with (5.321)). 
w e  thus obtain the new relat ions 

Then b n r , .  anv are given by Eqs.  (4.26), (4.27), (4.7), 

Eqs. (5.322) contain the variations &?jv,, &a,,, &a,,. 
Relations (4.24) previously derived for  this 

F r o m  (5.321) and (4.23) 
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h, = b - O,~Y + wi,a - Ao,, - kn 5 
do,, = Y 4- O)~,,P - wy,a - Awzo - k2 b A L X  ' I 

tg Z. 

Here,  a s  in (5.3221, bAV,. b A V ,  a r e  given by Eqs.  (5.58). 
From the third and the fourth equations in (2.23) we have 

(5.323) 

(5.324) 

Inserting these expressions for 6vx9 and 6vyo in the right-hand s ides  of 
Eqs.  (5.58) and expressing Ox+ Ova, €I=, in t e r m s  of a .  P, y and a2,  p2, y2 f rom 
(4.39), we obtain 

(5.325) 

From (5.323) and (5.325) we obtain the following expressions for  box., hyor 
6W& : 

1 

R 

6w+ = - * + k 2  { a + @YoY - %,P - A%, + 
+f[-ox~Ar-P((u,B,--lly,Y*)+ 

+(ray, - P U , )  Y - ;a - AVDy,]} 

(5.32 6) 

These expressions should now be inser ted for b,,. 6w,, in Eqs .  (5.322). 

In Eqs.  (5.322) we should a l so  introduce 
For 6AVxo,6AVyo in these equations we inser t  (5.325), having f i r s t  changed 
bxO, boya in accordance with (5.326). 
6ns,, anyo f rom Eqs.  (4.26), (4.27), (4.7), (4.8), (4.12). 
f i r s t  group of error equations of the sys tem being considered. 

Let u s  now turn to the second group of e r r o r  equations. Weshoulds t ress  
that in a l l  the preceding cases  of correct ion that w e  have so f a r  t reated in 
this book, the second group of error equations did not change, retaining its 
original form a s  derived for  autonomous inertial  sys tems.  
situation is different. This  is a consequence of our additional interference 
in the formation of the control torques of the stable platform. 

The final resul t  is the 

In this case,  the 
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(5.327) 

5.t hc1.e the variations A, , ,> ,  h ~ + r  a r e  expressed by (5.3261. hlaking the 
substitution 

fl =-Az. p,-&.Scosz, y, -bSsinz  (5 .328)  

and using the seventh equality in (2.23) and Eqs.  (4.15), (4.16), w e  get 

(5.329) 

Together with (5.326),  Eqs. 15.329) constitute the second group of e r r o r  

After the necessary manipulations, w e  can show that the substitution of 
rquat ions. 

variables (4 .39)  does not reduce Eqs.  (5.329), (5.326) to Eqs .  (4.40). 
second group of error  equations i s  thus radically different in this c a s e  from 
the corresponding equz-tions of an autonomous inertial  sys t em.  
group of  e r r o r  equations in general  cannot be separated from the f i rs t  group 
r5.322),  (5.325), (5.326:. In our  case ,  the f i rs t  and second group equations 
constitute a seventh-order coupled system of differential equations. 

simplify the treatment,  we take p = r =  const and = = 0. 
with ‘wi.. <,! . w - .  u , : ,  u,. , u 2 ,  and their  derivatives,  w e  obtain instead of 
Eqs.  (5 .325 )  

The 

The second 

In t h e  following we will only consider the c a s e  of small  ctt,r,, wp,, 02,. T o  
Dropping the t e r m s  

b l V r  = r h ,  - A V D r ,  

b 1 V ”  = - I bo.), - lL’[, . i 
Eqs. (5.326) a r e  now replaced by the s imple r  equalities 

Eqs .  (5.329) are similarly simplified: 

Eqs.  (5.322) can be wri:;ten in the form 

(5 .330)  

(5.331) 

(5 .332)  

(5.333) 



(5.335) 

These equations c l ea r ly  coincide with Eqs.  (5.311), s ince Aior,=:-  h,,, 

Let.us now turn to the second group of equations, Eqs.  (5.332). 
h,, = - .\rn,.,, hw+ = - 

Substituting 

w e  get 

(5.336) 

(5.337) 

In a l l  the previous cases ,  the second-group e r r o r  equations ( a f t e r  the 
relevant simplifications) had the fo rm 

(5.338) 

E q s .  (5.337) differ f rom Eqs.  (5.338) not only in fo rm but pr imari ly  in the 
In Eqs. (5.338) the total  position e r r o r s  bx?, b ) ~  are meaning of the var iables .  

calculated f rom the equalit ies 

bx, = 6.r .+ eY,r, = 6s - B x , r .  (5.339) 

whereas  in  Eqs.  (5.337) the total  e r r o r s  a r e  given by 

(5.340) 

The  ahove difference suggests  a comparison of this  sys t em with the 
principal Doppler co r rec t ion  technique, that based on Eqs.  (5 .217) .  

In c a s e  (5.217), the complete sys t em of error equations includes 
Eqs. (5.311), (5.338), and (5.339), which a r e  supplemented by defining 
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I From Eqs .  (5.340), (5.344), (5.346) we correspondingly get 

1 I 
6x2 = (- r A(*,, + k2 Avoxc) f i- 

(5.348) 

Comparison of the right-hand s ides  of Eqs. (5.347) and (5.348) shows that I 
I 

the constant e r r o r  components in  Eqs. (5.348) are a factor. of (1 +k,) less than 

substantially different. 
those in Eqs. (5.347). The time-proportional e r r o r  components are  a l so  

In case (5.347) we have 

6n;=-rAo Y0 f ,  6y;=rAox{ .  (5.349) 

and in case  (5.348) 

( 5.3 5 0) 

(5.351) 

Eqs.  (5.350) are correspondingly replaced by the approximate equalit ies 

Comparing (5.349) and (5.352) we see that for  

I r *ay, I > I AV D , ~  I. 1 r Amx, I > I AV og, 1 (5.353) 

the Doppler correct ion technique using torques (5.321) gives  sma l l e r  e r r o r s .  
Otherwise, the sys tem using cor rec t ion  (5.217) is m o r e  advantageous. Note 
that this comparison is ca r r i ed  out for  constant instrumental  e r r o r s .  Ran- 
dom e r r o r s  naturally requi re  a special  analysis, which w i l l  be made la te r  on, 

Note that for  k2>> 1 the Doppler cor rec t ion  technique changing the control 
torques is fundamentally equivalent (as we see, in  particular, f rom (5.352)) 
to integration of the vector  V, measured by the Doppler velocity meter .  The  
ro le  of the iner t ia l  sys tem he re  i s  mainly to maintain the platform orienta- 
tion in  the Dlane of the horizon and relat ive to  the meridian.  SO that the 
Doppler indeed measu res  the velocity we expect i t  to measure .  

The  above case  of Doppler correct ion is based, as we remember ,  on the 
following al terat ion of Eqs. (2.23). The f i r s t  two equations a r e  replaced by 
Eqs .  (5.49), (5.50), and the control torques are formed according to (5.321). 
The  expressions for  the torques differ f rom the corresponding expressions 
in (2.23) in that a,. my are replaced by (5.320). 
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However, the prcjections w t .  ($,, of the absolute angular velocity of the 
platform axes xy: on the corresponding directions enter  other equations in 
(2 .231 ,  a s  kvell a s  t h x e  from which the control  torques a r e  formed.  They 
also enter  the fifth ar.d the sixth eq*iations in !2.23), which give the coordi-  
nates s and :. 

In these equations w ~ *  ( , b y  can  also be replaced using (5.320). 
ttorques a r e  e i ther  lett in the s a m e  fo rm a s  in Eqs.  (2.23) or they are al tered in 
accordance with (5.321).  It i s  readily seen  that the f i r s t  al ternative does 
not affect the natura! frequencies of the iner t ia l  sys t em and i s  therefore  of 
no significance. 

. - 0 ,  a r e  expressed according to (5.320) in the equations for : and S ,  a s  
i ~ e i l  a s  i n  the expressions for  the control torques.  

The control 

hluch more  interesting is the second alternative,  in 1.vhich 

The fifth and the :sixth equations in (2.23) thus give 

(5.354) 

+ U (  -P,>slnS t1)‘3.’\105Sl ‘ iC f2” .  I I  
Let u s  consider  the e r r o r  equations. Eqs.  (5.322), (5.325), (5.326) c l ea r ly  

re ta in their  original form.  Eqs. (5.329) a r e  changed a s  follows: 

(5.355) 

If w e  take r = conet, z = 0, (+r,=w. = i ~ ) ~ ,  =0, we obtain Eqs.  (5.335) for  A x  
and h y  and Eqs .  (5.355) change over  to Eqs.  (5.338) ( i f  w e  u s e  (4.43) and 
(4 .44)) .  This  co r rec t ion  technique i s  thus dynamically equivalent to the 
previous alternative,  descr ibed by Eqs.  (5.217). 

5.6.2. 
e r r o r  equations. 
coefficients. Nonlinear correct ion 

Doppler co r rec t ion  increasing the o r d e r  of the 
Linear  correct ion with variable 

Consider an inert  La1 sys t em which r ece ives  the Doppler information in 
the following way. The  f i r s t  two equations in (2.23) a r e  replaced by 
Eqs.  (5.49), the cont.rol torques a r e  formed using the equalit ies ( k , i s  some 
constant coefficient) 

(5.356) 
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I M: = H3 [ow + $- AVxb -/- 

(5.356) 

and the other equations in  (2.23) remain  without change. 

the previous subsection. 
Eqs .  (5.321) only in that the right-hand sides in  (5.356) contain integrals  
over AV, and 

Let u s  der ive the e r r o r  equations for  this sys tem.  
take wr,. o y ,  wz,. u , ~ ,  uYal u2, to be zero,  r = const, z = 0 .  
have 

This  is a fur ther  development of the cor rec t ion  technique considered i n  
Eqs.  (5.356) for  the control torques differ f rom 

For  simplicity we 
From (5.49) we then 

I d 
( r  bSJ = hn rt - k, hAVxoe 

::t ir  ficl)I ) = bnyc - k, atwy$, _ _  

and these equations coincide with Eqs.  (5.333). 
Eqs .  (5.323) are replaced by 

I 

k 
b . r 0  = 4 - fhx, f $ bAVya f f 6 d t ,  

t ,  

ho, = y - Amzu. 

(5.3 57) 

(5.358) 

F o r  h A V x , ,  b h V , ,  anxe, andhn,. Eqs .  (5.330), (5.334) r ema in  in force.  
Inserting (5.330), (5.334) i n  Eqs.  (5.357) and solving for  &,,, GYu, weobtain 

(5.359) 

On the other  hand, inser t ing bAV,,, 6AV,  f rom (5.330) in  the f i r s t  two 
eauali t ies i n  (5.358) and differentiating. we obtain 

Equating the right-hand s ides  of (5.359) and (5.360) we obtain fo r  bxv and 

I 
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Inserting (5.361) in Eqs. (5.359) o r  (5.360), we make the substitution 
hx = r &  bp=-r ra .  After obvious simplifications, we get 

1 6;; + k ,  6; 4- ( 1 f k?) ai 6.; + o;k 6.~ = 

(5.362) 

Eqs.  (5.362) desc r ibe  (Q=-.$ @=,) t3X oscil lations of the platform t axis 

about the geocentric vertical .  Eqs.  (5.362) a r e  third-order equations. In 
the previous treatment,  analogous simplifications have invariably led to 
second-order equations: e.g., Eqs.  (5.335), (5.311), (5.313). T h e  increase 
i n  t h e  o r d e r  of the differential  equations i s  associated with the introduction 
of t h e  integrals over  A\’,r, AVy, in the expressions fo r  the control torques.  It 
i s  readily seen  that for  k ,  = 0 Eqs .  (5.362) are reduced by integration to 
Eqs.  (5.335). S i m i k r l y ,  Eqs.  (5.361) f o r  k ,  = 0 reduce to Eqs .  (5.331). To 
show this, inser t  u and f rom (5.335) in Eqs.  (5.361). 

(5.362) is a complete cubic equation 
The  cha rac t e r i s t i c  equation corresponding to each of the two equations in 

p3+ k i p ?  + ( 1  + k2)agp +- o,?k, = 0. (5.363) 

Since the coefficients k , ,  k,. k ,  are independent, they can always be chosen 
so that the cha rac t e r i s t i c  equation has  roots  with negative r e a l  pa r t s .  The  
free oscil lations of the platform a r e  then damped, and only the forced part  
of the solution r ema ins .  

they contain the same instrumental  e r r o r s .  
Eqs.  (5.362) contain higher o r d e r  derivatives than Eqs.  (5.335). 
instrumental  e r r o r s  h.r,, Any,. Lox,. h,,,, AVDx3, a r e  constant, the steady- 
s t a t e  e r r o r s  6x  and 6y f rom Eqs.  (5.362) are given by 

Comparing the right-hand s i d e s  of Eqs.  (5.335) and (5.362) we see that 
The only difference is that 

If the 

They depend only 3n the acce le romete r  e r r o r s .  Unlike the solutions 
(5.346) of Eqs.  (5.335), constant gy ro  e r r o r s  (gyro drift)  and Doppler e r r o r s  
do not lead to steady-state orientation e r r o r s  of the z axis .  

A s  before, we have 
Let u s  examine the situation concerning the total position e r r o r s  6x2, by2.  

6x2 = r&, 6y2 = - ra?. (5.365) 

where C L ~  and & a r e  given by 

= h x , ,  82 = hy*. (5.366) 
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Thus,  

To evaluate the integrals  on the right in (5.367), w e  t ransform Eqs.  (5.361) 
for h,,. 6 ~ ~ ~ .  Inserting for n and p their  expressions in t e r m s  of 62, ax, a i ,  
A;, hi;, 6- and expressing the instrumental  e r r o r s  f rom Eqs.  (5.362), we 
obtain for constant instrumental  e r r o r s  

(5.368) 

Inserting these expressions in Eqs.  (5.367) and integrating, we note that 
when the t ransients  a r e  damped 

so  that 
. .. . .. 

ax = ax = 0, a y = b y  =o. 

and the following steady-state total position e r r o r s  a r e  obtained: 

(5.370) 

J 

Unlike Eqs. (5.348). these expressions for  ax2, a)t, do not contain t e rms  of 
the form rAo,, t ,  r A a y 0 t ;  the t e r m s  proportional to AVD,~.  A V D ~ ,  for  k,>> 1 a r e  
virtually identical both in solutions (5.371) and in solutions (5.348). 

Note that the approach of this subsection can be fur ther  extended. Adding 
to the right-hand s ides  of Eqs.  (5.356) for  the control torques second integrals 
over  AV,,, AVY+ we end up with fourth-order e r r o r  equations. 
in the o rde r  of the e r r o r  equations relat ive to fixed instrumental  e r r o r s  
may, however, lead to an increase  in the random e r r o r s  of the aided 
sys tems (this will be proved in  the following). 

coefficients k , ,  k,, kS, etc., c lear ly  can be made known functions of time. 

This increase 

W e  have so  f a r  considered correct ion with constant coefficients. The 
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The  equations corresponding to this  case may be derived by the s a m e  
methods as in the c a s e  of constant coefficients. 
simply rep lace  in  the previous equations the constant coefficients by the 
given functions of tim.3, s ince  in the derivation of the error  equations we 
had to differentiate expressions containing these coefficients. T h e  coeffi- 
c ients  being constant n the previous case ,  the corresponding der ivat ives  
dropped out, which is no longer t rue .  

by functions of the form" 

However, we must not 

Interesting resu l t s  a r e  obtained i f ,  say,  the coefficients a r e  represented  

k ,  ( I )  = k !  k,ne-u' ,  (5.372) 

where k;' and k, . ,are  s c m e  constants .  
Fo r  r = 0 we have 

ki  == k: - k , . ,  , 

bvt1ic.h may be quite large, whereas  ,k, t t = r . - k k ' ; '  should be made sufficiently 
sma l l ,  

k .  a r e  functions of I\'. 
1,vithout much difficult).. However, no regular  methods are avai lable  fo r  
analyzing the resulting equations even for the s imples t  functions k,(lvI, 

t 'inally, nonlinear cor rec t ion  sys t ems  can  be considered, where k , .  k,, 
The  corresponding error equations can  be derived 

R , I l V , .  k i i l V l .  
This  analysis  general ly  r equ i r e s  numer ica l  solution of the corresponding 

eiquations, and u-e w i l l  not go into this problem in any de t i i l .  

',I i (7 1 u re ,  C.L. Theory of Inertial Guidance. - Prentice Hall. 1960. 
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Chapter  6 

ASTRONOMICAL CORREC TlON OF I N E R T I A L  

DOPPLER CORRECTION 
NAVIGATION S Y S T E M S .  C0,MBINED A S T R O -  

§6.1. INTRODUCTORY R E M A R K S  

The inertial  navigation sys tems with al t imeter  o r  Doppler correct ion 
considered in the previous two chapters  only change the s t ructure  of the 
f i r s t  group of e r r o r  equations (1.95)  and do not affect the second group of 
e r r o r  equations ( 1 . 9 6 )  (with the exception of the case  of Doppler correct ion 
changing the control torques, which was considered in the las t  section of 
the previous chapter).  

instrumental  e r r o r s  of the gyroscopic sensit ive elements of the iner t ia l  
sys tem.  
that the gyro e r r o r s  ( e r r o r s  of the absolute angular velocity me te r s ,  plat- 
form drift) may lead to growing e r r o r s  of position and orientation. In two- 
acce lerometer  inertial  sys tems the instrumental  gyro e r r o r s  pr imar i ly  
limit the time of continuous operation of the system during which the des i red  
accuracy  i s  ensured. Note that if  the inertial  sys tem is f r ee  f rom gyro- 
scopes, and the only sensit ive elements a r e  acce lerometer ,  the situation is 
essentially the same.  In this c a s e  the instrumental  e r r o r s  of the acce lero-  
m e t e r s  used to determine the platform orientation a l so  lead to growing 
e r r o r s  in navigation parameters. ' : '  

To  maintain the des i red  accuracy of iner t ia l  sys tems,  the gyro elements 
( o r  the substituting acce lerometers )  should be appropriately corrected.  The  
correction in this c a s e  involves comparison of the actual and the calculated 
orientation of the sensit ive elements relative to known directions in the axes  

The known directions a r e  generally provided by celest ia l  marke r s :  s t a r s ,  

The right-hand s ides  of the second group of e r r o r  equations include the 

The analysis of the e r r o r  equations in the previous chapters  shows 

016.%4 and 0,blC. 

Sun, the planets and the Moon, cosmic radio sources .  Artificial Ea r th  
satel l i tes  and ground m a r k e r s  can  a l so  be used fo r  these purposes.  

used (as t ronomica l  correct ion or astrocorrect ion) .  
in this ca se  are very  simple for  two reasons.  
near  the Earth,  the direction f rom the cu r ren t  position point to the distant 
s t a r s  can be regarded  as fixed in the axes  O,&q.h, i.e., the parallactic 
effects and the proper  motions of s t a r s  a r e  ignored. 
to the s t a r s  can  be determined ignoring their  angular dimensions. 

* See my "Theory of Inertial Navigation: Autonomous Systems. ' Nauka. 1966. 

Optical correct ion using the positions of the fixed s t a r s  is most commonly 
The  correct ion sys t ems  

F i r s t ,  when an object moves 

Second, the directions 
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I f.2. EARTH'S hlOTION 

In t h e  following w e  will mainly consider  celest ia l  correct ion using s t a r s  
(as t rocorrect ion) .  The  main r e su l t s  can  be easi ly  extended to other cases 
of celest ia l  correction. In the following we will be only concerned with the 
correct ion of gyro elements.  However, in view of the above r emarks ,  the 
r e su l t s  a r e  equally applicable to gyro-less  sys t ems .  

Let u s  briefly discuss  s o m e  problems which a r i s e  in the analysis  of 
as t rocorrect ion systems.  

The f i r s t  problem i s  the calculation of the direction to celest ia l  objects 
at any given t ime.  Th s requires  knowledge of the Ea r th ' s  motion relative 
to the s t a r s .  
bodies in var ious axes  are a l s o  applied. The  second problem i s  associated 
ivith the information supplied by telescopic observations of s t a r s  ( o r  other  
celest ia l  bodies). 
bodies f rom their  t rue position due to aberrat ion (Ea r th ' s  orbi ta l  motion) 
and atmospheric refract ion should be taken into consideration. 
daytime correct ion in lower atmospheric  l aye r s  should allow for  inter-  
ference from scat tered atmospheric  radiation. The third principal problem 
is the analysis  of the dynamics of as t rocorrect ion systems,  the changes in 
the e r r o r  equations of the inertial  system, and the dependence of navigation 
e r r o r s  on instrumental  errors. 

The astronomical  methods of specifying directions to celest ia l  

Here  the deviation of the apparent position of the celest ia l  

Moreover,  

S 6 . 2 .  EARTH'S MOTION. DETERMINATION 
OF DIRECTIONS TO CELESTIAL BODIES IN 
AXES FIXED T O  THE EARTH 

6.2.1.  Simplifi 

If we ignore 
motion, r ega rd  

d description of the Ea r th ' s  motion 

he effect of the planets and the Moon on the Ea r th  - orbital  
the Sur. as a fixed s t a r ,  and reduce the Sun's a t t ract ion on 

the Ea r th  to a resultant force directed 
along the line joining the Ea r th ' s  cen te r  
to the Sun's center ,  we conclude that 
the Ea r th  moves like a point m a s s  in a 
cen t r a l  (spherical)  field.* 

motion, the cen te r  of m a s s  of the Ea r th  
will move in a plane through the cen te r  
of the Sun; the orientation of this plane 
relative to the fixed s t a r s  r ema ins  
invariable.  It is known a s  the plane of 
the ecliptic in astronomy.*'k The E a r t h ' s  
orbit  in the plane of the ecliptic is an 
ell ipse ( F i g u r e  6.1) with the Sun in one 
of i t s  foci S. The point f7 on  the ma jo r  

In accordance with the laws of this 

FIGCRE 6.1 

axis  of the ell ipse ( the  lme  of apsides) i s  the perihelion of the E a r t h ' s  orbit  
( t h e  point of maximum approach to the Sun), and the point .4 is the aphelion, 

* : ~ t ,  c . P . ,  .a p p r  I I. P. Trait;' de I\!&anlcue i ;~t icnt : ic . - -C;duth!~r-V~llai i .  195:J. 
* *  Exact definition of the plane of the ecliptic should take into csnrideratlon the effect of the planets and tile 

".:om on the maion of the Earth's center of mas. 



the most distant point f rom the Sun. 
to the cur ren t  position of the Earth E and tl is the angle between this 
radius-vector and the radius-vector of the point 17, the equation of the 
ellipse is 

If R i s  the radius vector f rom point S 

where a is the semimajor  axis of the Ear th ' s  orbit, e i s  the eccentricity. 
Numeric a1 values: '% 

u = 1 4 9 . 5 .  IUGkm, e=0.01675. (6.2) 

Let (T be the a rea  of the sec tor  E S n ,  P the orbital  period of the Earth 
around the Sun, t the time. 
(Kepler ' s  law) i s  written in the form 

The a rea l  integral of motion in a cent ra l  field 

mi ! ' r e >  Pn 

By (6.1) and (6.3) we have 

The velocity Z, of the Ea r th ' s  center  of m a s s  i s  therefore expressed a s  
a function of the angle (3 by the following equation: 

Since P = 31.558 . I O 6  sec,  the average velocity of motion i s  

2JlU 
(6 .6 )  V0=-=29.770 P I G Z  km/sec.  

If in the f i r s t  equation in (6 .4)  we ignore the t e rms  with e2 and t e r m s  of 
higher order ,  we readily find 

o = 2n t + 2e sin 2 t .  (6.7) P 

The motion of the Ear th  about the center  of mass  in navigation problems 
can be considered to f i r s t  approximation'k a s  uniform spin with angular 
velocity u = 7.292116 . seem1 about i t s  axis  (the minor axis  of the 
Clairaut ellipsoid) in the sense  of orbitaI revolution. 
inclined a t  an angle e = 23O27' to the normal  to the plane of the ecliptic. 

The Ear th ' s  axis i s  

* 8 1  a z h  k o ,  S.N. Kurs sfericheskoi astronomii (A Course in Spherical Astronomy). - Gostekhizdat. I Y 5 4 .  
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6 . 3 . 2 .  Determination of directions to celest ia l  bodies 

\,i.e ..vi11 u s e  the h,?rizontal, equatorial, and ecliptic coordinate sys t ems  

The horizontal coordinate system is defined by the axes  Ox!y,=, introduced 
o f t e n  applied in astr ,>nomy. 

i n  1 .1 .2.  If w e  take h = 0 and ignore the difference between the direction of 
the normal to t h e  C'lairaut ellipsoid and the 
geodesic ver t ical  (plumb line), the axes  O . ~ , . v , 2 ~  
(see Figure 1.3), where the plane OS,;:, i s  tangent 
to the geoid, will coincide with the horizontal 
coordinate system used in astronomy. An a rb i -  
t r a r y  direction with unit vector p i s  described in 
the  OS,^,^, axes  by the angle H between this unit 
vector and the plane  OS,^, and the angle .-l between 
the projection of the unit vector f ,  onto the plane 
O X , ~ ,  and the axis  Oy, ( F i g u r e  6 . 2 j .  
varying from 0 to 2 1 is the azimuth of the 

3i direction ! t .  The positive angles .-l a r e  reckoned 
from the axis  Oy, to the axis  OS,, i.e., from north 
to eas t .  The  angle H i s  the height of above the 
horizon. It va r i e s  f r o m  0 to frr; when the angle 

If x:. y,. zl 

The angle A 

&,$ 

A 
F[i.!'RE 6::. 

H is positive, the direction p l ies  above the plane of the horizon. 
a r e  the unit vectors  of the axes  OX!, Oy,. O z , ,  we have 

p = x , ~ o s H s i n . 1  f y , c ~ s H ~ o s . ~ + z , s i n H .  (6.8) 

The angle H i s  often replaced by the angle z between the vector p and the 
axis  O:,: since the axis  0 2 ,  i s  directed to the zenith, this angle is known a s  
the zenith distance of the direction 0 .  Since z = z ' 2 - H H ,  w e  have 

I' = xl sin z sin A +y ,  sin z cos .-I fz,  cos z .  

The f i r s t  equatorial  system O;,q,;, (F igu re  6.3) is defined as fol lows.  The  
axis  O;, is directed paral le l  to the Earth 's  spin vector u ( the celest ia l  axis) .  

(6.9) 

The  axes  0 5 !  and 011, lie in a plane normal  to 
the vector n ,  i.e., paral le l  to the Ea r th ' s  
equatorial  plane, with the axis  Obl in the m e r i -  
dional plane through the point 0. The a r b i t r a r y  
direction character ized by the unit vector p i s  
described in this sys t em by the angles 15 and t ,  
which a r e  analogous to the angles  H and .A. 

The angle b ,  which is the declination of the 
direction p ,  var i e s  f rom 0 to f .7/2. Posit ive 
angles correspond to vectors  Q making a n  
acute angle with the ax i s  O & .  The  angle 6 is 
often replaced by i t s  complementary angle, 
the polar distance p . 

The angle t is the hour angle of the direction 
P. It va r i e s  f rom 0 to 2.7. Posi t ivehourangles  
a r e  reckoned against  the Ea r th ' s  spin, i.e., the 

The  angle t i s  

b 

6 A 
FlG!rRE 6.3. 

angle r i s  reckoned f rom the axis  Og, to the negative a x i s  Oq,. 
conveniently measured in t ime units f rom 0 to  24h .  
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Thus in the O&qlCl axes  
I 

p = g I c o s 6 c ~ ~ f  - q I c o s 6 s i n t + ~ , s i n 6  (6.10) 

or 
I 

(6.11) p = j, sin p cos f - ql sin p sin t +GI COS p .  

where E,, q,, GI a r e  the unit vectors  of the respect ive axes.  

distant s t a r s  changes both due to the Ear th’s  rotation and the displacement 
of the point 0 near  the Ear th’s  sur face .  The orientation of the axes O X , ~ , Z ,  
evidently changes with t ime i r respec t ive  of whether the two geographical 
coordinates cp’ and h of the point 0 a r e  var iable  or constant. The orientation 
of the axes O&ql~l ,  on the other hand, will change with t ime only if the longi- 
tude h of the point 0 is var iable .  

The t ransformation f r o m  the axes Ox,y ,z ,  to O:,q16, is descr ibed by the 
following mat r ix  of direction cosines: 

Note that the orientation of the axes O:lql;l and Os,y,z, re lat ive to the I 

XI 0 1 0  
y1 - - s i n  cy‘ 0 coscp’ 
z1 coscp’ 0 sinrp’. 

(6.12) 

Let us  change over f rom the angles 6 and t ,  say, to the angles H and A .  
From (6.12), using (6.10), we get 

p=-xx ,cos6s in t  +y, (- sir1cp’cos6cost+coscp’sin6)+ 
+ z, (coscy’ cos 6 cost  +sin@ sinb). (6.13) 

Comparison with Eq. (6 .8)  gives the transformation formulas  

(6.14) I cos H cos A = - sin cp’ cos 6 cos t + COS cp’ sin a, 
s in  H = cos(p’cos b cost  +sinrp’sin 6. 

To define the second equatorial sys tem and the ecliptic sys tem,  we pass  
through the point 0 another plane, paral le l  to the plane of the ecliptic this 
t ime.  
assumed to maintain fixed orientation relat ive to the distant s t a r s ,  the two 
planes paral le l  to the plane of the equator and the plane of the ecliptic 
respect ively w i l l  in tersect  along a s t ra ight  line through the point 0, which 
a l so  re ta ins  a fixed orientation in the celest ia l  space.  Let 1 be a unit vector 
normal  to  the orbital  plane of the Earth,  so that the Ear th  revolves around 
the Sun counterclockwise when viewed f rom the tip of the vector I .  Then 
c lear ly  the angular velocity 6 is directed along I ,  and the vector u x i  points 
along the intersect ion line of the ecliptic plane with the equatorial plane. 

The second equatorial sys tem of coordinates O&& (F igure  6.4) can now 
be introduced a s  follows. 
vector  U ,  the axis  Ok2 points along the vector u x l ,  and the axis  Oqz naturally 
complements the two axes OE2 and 062 to a right orthogonaL system. 
plane O&q2 of this sys tem is paral le l  to the equatorial plane. The axis OF2 is 
said to be directed to the point of vernal equinox. We shal l  correspondingly 

If the Ear th‘s  orbi ta l  plane and the direction of its spin vector a r e  

The axis  052 is directed along the Ear th’s  spin 

The 
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speak of the direct ion of the verna l  equinox. 
When the Earth in the course  of i ts  orbi ta l  
motion reaches  a point where the radius-  
vector  R f rom the Sun to the Ear th  is 
directed against the axis  ut2,  the Ea r th ' s  axis  
IS  c lear ly  normal  to the radius-vector  R and an 
astronomical  change of season  i s  observed in 
the Northern Hemisphere: winter gives way 
to spr ing.  
direct ion chosen for  the vector u . * I .  

the second equatorial sys tem of coordinates 
(F igu re  6.4) by the angle 4 between 1) and the 
plane 0:,lt, and the angle n between the ax i s  

The  declination angle S i s  
The angle n i s  cal led the 

This  explains the par t icular  

\ %  The general  direct ion p i s  descr ibed in t? 
FLC-I'W 6 4 .  

u;; and the projection of 0 onto the plane O:2~12. 
identical to that in the f i r s t  equator ia l  sys tem.  
r ight  ascension.  
011.. 
to 2-Lh), a s  well a s  in degrees  or radians.  

It goes f rom 0 to 2 3  and it i s  reckoned f rom the axis  0:: to 
The angle a ,  like the hour angle f ,  i s  measured  in t ime units ( f rom 0 

LVriting S I .  q-. g2 for  the unit vectors  along the axes 0::. of t : .  u:, , we get 

p = ~ 2 ~ i ; i S c ~ - ~ s u  f q -  c c . ; , A s i n u ~ F - s i n b .  (6.15) 

If s i s  the angle bctween the axis  0;: and t h e  axis  0~~ of the f i r s t  equato- 
r i a l  sys tem,  we have 

(6.16) s = n + t .  

It  will become clew from the following that s is numerically equal to the 

The relat ive orientation of the axes  O:ttlL;, and O:211.-L2 i s  descr ibed by the 
s ide rea l  t ime on the meridian of the ax is  01,. 

following mat r ix  of direct ion cosines: 

i '12 i? 
c o s s  - s i n s  0 

11, sins cos s 0 
5 ,  0 0 1 .  

(6.17) 

Matrix (6.17), used together with Eqs.  (6.15), (6.16), enables  us  to change 
over  f rom the coordinates  t and b to the coordinates  (1 and 6 ,  and vice 
versa .  
Eqs.  (6.14) for conve:rsion f rom 6 and t to H and A .  

a s  in the previous cases ,  is placed a t  the point 0 - the cu r ren t  position of 
the object; the ax is  o;, is directed along the normal  1 to the plane of the 
ecliptic, and the ax is  O;, i s  made to coincide with the ax is  O : 2 .  
complements the other  two axes to a right orthogonal sys t em.  Since the 
angle between the equator ia l  plane and the plane of the ecliptic is c ,  the 
direct ion cosines  of the angles  between the axes  O:2i& and 0iJt& a r e  given 
by the following matrix:  

The t ransformation formulas  a r e  obtained along the s a m e  lines a s  

We can now define the ecliptic sys tem of coordinates  O:jil,:l , Its origin, 

The  ax i s  oq, 

(6.18) 
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The general  direction p is described in the coordinate system O:,& by 
the latitude B and the longitude L ,  which a r e  analogous to the geocentric 
coordinates cp and 1. Thus 

p = g,  cosB cos L + q ,  cos B sin L +cl sin B. (6.19) 

Unlike the axes O x l ~ l z l  and O:lqlCl, the axes  O:2q2;1 and O;& re ta in  an 
invariable orientation relat ive to the s t a r s .  The directions to the distant 
s t a r s  in these axes a r e  therefore  fixed, i.e., the coordinates u, 6 and B, L of 
these directions a r e  constant. 

In astronomical almanacs the directions to various celestial  bodies a r e  
generally described by the coordinates a, 6 or B ,  L for the beginning of the 
corresponding astronomical  year .  Given these coordinates, mat r ices  (6.17), 
(6.12) can be used to change over to the coordinates of the celestial  bodies 
in the f i r s t  equatorial system and in the horizontal system; suitable mat r ices  
of direction cosines can b e  applied to t ransform to any other coordinate 
system whose orientation relat ive to the Ear th  at a given t ime is known, 
e.g., the system rigidly fixed to an inertial  platform. 
correct ion telescopes can be properly aimed relat ive to the platform axes.  

Note that we have so f a r  assumed that the orientation of the second 
equatorial system and the ecliptic system was invariable re la t ive to the 
directions to fixed s t a r s .  This  i s  associated with an ea r l i e r  assumption of 
the fixed orientation of the Ear th ' s  spin axis  and i ts  orbital plane ( the  plane 
of the ecliptic). 

orientation of the instantaneous spin axis  of the Earth does change relative 
to the s t a r s .  The main reason i s  the noncentral charac te r  of the lunisolar 
attraction: the gravitational fo rces  cannot be reduced to two resultant 
vectors  directed along the lines which join the Ear th ' s  center  with the 
respect ive centers  of the Sun and the Moon, and resul tant  torques about the 
Ea r th ' s  center  of m a s s  have to be considered. The origin of these torques 
i s  attributed to the Ear th ' s  flattening, i.e., the asymmetr ic  distribution of 
the Ear th ' s  mass  about the directions to the center  of m a s s  of the Sun and 
that of the Moon. 
the Ear th ' s  equator and they work to shift this plane to coincide with the 
plane of the ecliptic and the lunar orbital  plane. The effect of these torques 
is to produce a precession of the Ear th ' s  spin vector about the normal to the 
plane of the ecliptic on the sur face  of a cone with an opening angle of 2 e  and 
with a period of about 26,000 yea r s  and a nutation with a principal period 
of about 18.6 years ,  which periodically changes the inclination of the plane 
of the ecliptic to the equatorial plane by an angle Ar ( - 10"). 
plane in space. 
per  century (at  the cur ren t  epoch). 
ly changes (reduces at the cur ren t  epoch) the angle E .  

and the Moon both move around a common center  of mass ,  so that the 
Ear th ' s  orbit departs  by about 1" f rom the plane of the ecliptic, near which 
the Earth-Moon center  of m a s s  moves. 

The rotation of the plane of the ecliptic, precession and nutation of the 
instantaneous spin vector a r e  the three main fac tors  which change the orien- 
tation of the ecliptic and the second equatorial coordinate sys tems relative to 

In this way the a s t ro -  

Actually these assumptions a r e  valid only to f i r s t  approximation. The 

The resultant lunisolar torque vectors  lie in the plane of 

Planetary perturbations also change the orientation of the Ear th ' s  orbital  
It ro ta tes  about an axis  in the orbital  plane a t  a r a t e  of 47" 

This  rotation of the line of apsides slow- 
Moreover, the Earth 
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the fixed s t a r s .  The coordinates of the directions to celest ia l  bodies defined 
assuming fixed orientation of the axes  O;?tE::! and @ . 1 1 \ ; >  will therefore  contain 
cer ta in  e r r o r s .  If the directions to these bodies a r e  used for  purposes of 
as t rocorrect ion in an iner t ia l  sys tem,  the position determination will prove 
to be inaccurate.  

Ea r th ' s  motion about the Moon-Earth cen te r  of m a s s  - O'I.1 annually) and 
nutation (0".5 annually fo r  the long-period component, and a s i m i l a r  contri-  
bution from the short,-period component) a r e  c lear ly  ignorable a s  f a r  a s  
navigation is concerned, if we permit e r r o r s  of about 1 km in position 
determination. This  follows f rom the fact that the result ing position e r r o r s  
de not exceed the sum of the different contributions when the orientation of 
the axes  0 E 2 y Z i  and Ot,q~5, i s  taken corresponding to the beginning of the 
as t ronomica l  yea r  (and not the par t icular  t ime in question). 

error, since it a l t e r s  the orientation of the spin vector (and hence of the 0 Z L  
axis} by some  20" annually and ro t a t e s  the direction of the verna l  equinox, 
i .e.,  the 0;: ax i s  through 50" annually in the plane of the ecliptic.  The 
position e r r o r  will bet of the s a m e  o r d e r  of magnitude. 
effect should be allowed for  by taking the actual orientation of the axes  E 2 t &  

and C I S  ti:; at  the time the as t rocor rec t ion  sys t em begins to function o r  near  
that t ime. 
tively short  and most1,vdoes not exceed one month, the e r r o r  buildup will not 
exceed some  5". Note that when speaking of distant s t a r s ,  the variation of 
the "fixed" directions in the axes  0::q:Z: and O:!q.,Zr i s  associated with the 
dcfinition of these coordinate sys t ems  and with the position of the s t a r s  in 
these particular sys tems:  it ha s  nothing to do with any change in the position 
of t h e  s t a r s  in the absolute space.  The  angles between different directions 
t o  distant s t a r s  e i ther  do not change a t  a l l  or change by negligible amounts 

1 - l"1. These  changes are assoc ia ted  with the proper  motion of s t a r s  and 
:tit: i t .  parallactic displacement.  

the apparent position of the celest ia l  objects.  
differ by the amount of aberrat ion due to the Ea r th ' s  orbi ta l  motion. The  
annual aber ra t ion  constant, determined by the r a t io  of the Ea r th ' s  orbi ta l  
velocity to the velocity of light, is - 20". 
introduced and the api3arent coordinates of the s t a r s  a r e  used, their  positions 
should be determined a t  the t ime the cor rec t ion  sys t em begins to function. 
Indeed, if we measur12 the apparent directions to the stars a t  z e r o  t ime (on 
the sys t em ' s  clock), the change in these direct ions due to abe r ra t ion  will not 
exceed = 10" during the following month, s ince the direction of the Ea r th ' s  
velocity vector re la t ive to the s t a r s  changes by about rr /6  in one month. 
Somewhat s m a l l e r  aber ra t ion  i s  caused by the diurnal rotation of the Ea r th  
and by the displacement of the object relative to the Ea r th ' s  surface.  Even 
if the velocity of the abject is close to the c i r cu la r  orbit  velocity, the abe r -  
ra t ion r ema ins  l e s s  than 5". 

the s t e l l a r  parallax and the proper  motions of s t a r s  can  be ignored: the 
annual parallax of s t a r s  does not exceed 1" and the proper  motions are 
vanishingly small .  The  diurnal paral laxes  a r e  meaningful only w h e n  the 
cor rec t ion  sys t em u s e s  the Sun, the Moon, the planets and, of course,  

The rotation of the plane of the ecliptic ( = 0".5 annually), the effect of the 

The  precess ion  of the Ea r th ' s  spin axis,  however, gives a substantial  

The precess ion  

Since the period of continuous operation of the sys t em i s  r e l a -  

i n  astr .ocorrection calculations we should distinguish between the t rue  and 
The  two sets of coordinates 

If no aberrat ion co r rec t ion  i s  

In conclusion, let us consider the parallactic effects. In as t rocorrect ion,  

17 1 



CII. 6 .  ASTKONO.MK:AL (.C)RKEC'I10N 

ar t i f ic ia l  Ea r th  satell i tes.  The diurnal parallax of the Sun i s  sma l l  enough 
to be ignored ( -  8"). The diurnal parallaxes of the near  planets, however, 
may reach l ', and the diurnal parallax of the Moon is as high a s  2" and 
should be allowed for  with due precision. In as t rocorrect ion sys t ems  using 
the directions to art if icial  Ea r th  satell i tes,  the parallactic displacement i s  
evidently one of the principal effects to be allowed for  in direction 
determination. 

6.2.3. Ea r th ' s  motion and measurement  of t ime 

Eq. (6.16) defined the s ide rea l  t ime s. 
in astrocorrection, and we will consider it in m o r e  detail.  

If the Ea r th ' s  spin relative to the fixed s t a r  is assumed to have constant 
magnitude, a natural  t ime unit is provided by the s idereal  day - the axial  
period of the Ea r th  relative to  the s t a r s .  
t ime when the axes OF1 and Gi2 of the first and second equatorial sys t ems  
coincide, i.e., a t  the t ime when the direction of the vernal equinox passes 
through the obse rve r ' s  meridian.  
the s idereal  t ime.  Evidently, i f  si and s2 a r e  the s idereal  t imes of two 
different meridians 
of s idereal  t ime is numerically equal to minus the difference in longitude: 

s, - 9. = F., - %l. 

This  i s  a highly importantconcept 

The s idereal  day begins a t  the 

For  this reason Eq. (6 .16 )  indeed defines 

and 1., a t  the s a m e  (chronological) time, the difference 

(6.20) 

In practical  applications, so l a r  t ime is more  useful than the s idereal  
t ime. The unit of t rue so l a r  t ime - the so l a r  day - i s  defined a s  the length 
of time between two successive meetings of the radius-vector 4 (F igu re  6.1) 
with the plane of a fixed t e r r e s t r i a l  meridian.  A measure  of the t rue solar 
t ime at  some  point 0 is provided by the angle between the projection of the 
radius-vector R on the plane of the Ea r th ' s  equator and the intersection line 
of the equatorial  plane with the meridional plane through 0 .  
vectors  1 and u make an acute angle . 7 / 2 - ~ ,  the so l a r  day is longer than the 
s idereal  day. 

Let u s  consider the equation of the t rue so l a r  time on a meridian which 
coincided with the direction - R  a t  the t ime of perihelion passage. 
origin of the two equatorial  and one ecliptic sys t ems  defined in the preceding 
is moved f rom the point 0 to the E a r t h ' s  center O,, and the corresponding 
axes are respectively designated O l ~ l q l ~ l ,  Oi:,q2&2. Ol;Ill,;3. 
of the perihelion in the axes  O,L,t&, writing Ro for  the unit vector along R ,  
we have 

(6.21) 

Since the 

The 

If (*I i s  the longitude 

- Ro = - El cos(6)  + 8) - q1 s i n ( o  + 0). 

The matr ix  of direction cosines  between the axes O,;,T& and OI:,qd<,, takes the 
form: 

F A  ql 63 

E? cos (x + u t )  sin[x + u t )  0 (6.22) 
q2 -sirl(X + u t )  c o s ( x  + u t )  0 
5 2  0 0 1. 
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He re  ii i s  the Ea r th ' s  spin relative to the s t a r s ,  r is the s ide rea l  time": 
reckoned from the time of perihelion passage, and the angle x is defined by 
the condition that the plane of the meridian initially coincides with the 
direction - R o :  

?< < = it.65 E tq ,., (6.23) 

Together with Eq. (6.21) for  the unit vector - R  we have from (6.10) t h e  
following expression for  this vector in the axes  OL:itl,;l: 

- I ? ,  = t l  io; 3 : tl E T - Q ,  i'" : A - I n T - 5 ,  s I n g\o, (6.24) 

where h -  is the declination of the Sun, and T is the hour angle of the Sun, 
i.e., the t rue so l a r  t ime measured in angular units. 

Equating the components of the vector - R  along the axes :,, qi. f rom 
Eq. (6 .24 )  to i t s  components from Eq. (6.19) (using the ma t r i ces  (6.22),(6.17) 
to t ransform from the axes O!;,rl:j  to oi;,q.S1), w e  find 

(6.25) 

Retaining only ternis  of f i r s t  o r d e r  in (1-cos e) and using Eq. (6.23) and 
the approximate expression (6.7) for  t l i r t ,  w e  obtain 

This  relation is known a s  the equation of t ime ,:'"and within the frzmework 
of our  simplifying assumptions i t  r e l a t e s  the s ide rea l  t ime to the t rue so l a r  
t ime. 

By (6.27) we see th i t  the t rue s o l a r  t ime i s  a nomonotonic  function. For 
this reason the so-called mean solar t ime i s  introduced, which is related to 
the s ide rea l  t ime by the f i r s t  t e r m  on the right in Eq. (6.27). If nonzero 
initial conditions are specified, the dependence of the hour angle of the mean 
Sun T on the s ide rea l  t ime f is written in the fo rm 

w n e r e  To is the hour a?gle of the mean Sun at  the given meridian a t  the 
s idereal  t ime h.  Eq. 16.28) would give an exact definition of the so l a r  

* r is p o p r t m n a l  to s. and the proportionality cwfficient is clearly the Earth's $pin relative to the stars, U .  

.* L: l a  z h ko,  S.N.  K u m  sfericheskoi astronornii (.\ C o m e  in Spherical .Astronomy). - Gosrekhtzdat. 19%. 
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t ime if the Ear th  moved around the Sun with constant velocity in a 
c i rcu lar  orbit ( e  = O ) ,  and the Ea r th ' s  spin axis were normal to the 
orbi ta l  plane ( E  = 0) .  A l l  this explains why the T defined by Eq. (6.28) is 
called the hour angle of the mean Sun. 

complete axial rotation of the Ear th  relative to the s t a r s .  
U = 2 , ? 7 .  and P i s  the number of s idereal  days in a year .  
so la r  t ime T is the mean so lar  day, so that 

The unit of s iderea l  t ime t is the s iderea l  day, i.e., the duration of one 
Then numerically 

The unit of mean 

T -To= k ( T  - 50).  (6 .29 )  

Inserting (6 .29 )  in (6.28) and seeing that u = 2 x ,  we get 

(6.30) 
P-1 

T - To = p ( t  - t o ) ,  

where ro and to a r e  the corresponding initial values. 

completes in a year  one rotation more  relat ive to the s t a r s  than relative to 
the Sun, we have 

Let Q be the number of mean so lar  days in a year .  Since the Earth 

Q == P - 1 = 365.2422, (6.31) 

and Eq. (6.30) can be written in the form 

Eq. (6.32) re la tes  the s iderea l  and the mean so lar  t ime a t  some instant on  
a given meridian.  
(chronological) t imes (1) and (2)  we have 

For  two different meridians h, > h, and two different 

(6.33) 

Since on one meridian 

and for  the same time 

we have 

(6.34) 

(6.35) 

The las t  expression defines the s iderea l  t ime f:;, a t  some (chronological) 
t ime on the meridian h2 in t e rms  of the mean so lar  t ime $fi a t  the same 
chronological t ime on the same meridian and the s iderea l  and mean solar  
t ime and T:)~ a t  some other chronological t ime on another meridian A , .  
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The Greenwich meridixn is generally chosen a s  i.,. If r~‘i,c~ i s  the s idereal  
t ime on the Greenwich meridian at t h e  mean midnight, we c lear ly  have 
T;i ,,= 0 .  

6.2.4.  
as t ronomical  0bservat:ons 

Fixing the position on the Ear th  f rom 

Determination of directions to selected celest ia l  bodies re la t ive to the 
axes I J X , ~ , : ,  at fixed t imes has been long used in navigation, geodesy, and 
cartography €or  measuring the coordinates of a point 0 on the Earth’s  
surface.  

The method for the determination of the latitude y ’  i s  suggested by 
Eqs. (6 .14) .  If we measure  the height ff of a celest ia l  object at the t ime of 
upper culmination, i .e. ,  when t = O ,  and a s s u m e  the declination 6 a t  the 
t ime of observation to he known ( fo r  a distant s t a r  6 = const), we have f rom 
the third equation in (6.1 4) 

( 6 . 3 7 )  sin H =coscrr ‘ -O, .  

and for  t = 0 the direction to the celest ia l  body l ies  in the plane Oy,:,, s ince  
sin .-I = 0. 

The measurement  of the longitude 2. c lear ly  amounts to comparing the 
local t ime (whether s idereal ,  t rue  so la r ,  o r  mean so lar )  with the t ime of 
some reference meridian at the s a m e  physical time, s ince the difference in 
t ime between two meridians a t  the s a m e  instant i s  equal to the difference of 
the longitudes of these ne r id i ans .  

If we measure  the heights H I  and H 2  of two ce les t ia l  bodies above the 
horizon and know the s iderea l  t ime si and s2 on the Greenwich meridian 
corresponding to the two measurements ,  we can simultaneously find both 
the latitude and the longitudes (Somner’s method). Indeed, f rom the las t  
equation in (6.141, f rom (6.16) relating the right ascension CI and the hour 
angle t to the local s ide rea l  t ime s, and from the equality of the difference 
in the local and Greenwich s ide rea l  t ime to the longitude of the obserLration 
point, we have the se t  cf equations 

i i r i  HI =sinq’srn+ i c o s ~ ’ c o s 0 ,  cos(r, --a, +j.), \ 
Fin H -  = ziny’sincl, + sosrf’cosh2  cos^, - a, + j.). i (6 .38)  

Eqs.  (6.38) a r e  equations in the coordinates rF’ and i. of two lines of equal 
height, corresponding to the measured HI and H,. 
Eqs.  (6.38) have two pa i rs  of solutions. 
should have a rough idea of the position. 
H, is sufficiently large,  this does not cause  additional difficulty. 

It i s  readi ly  seen  that 
To choose between the two, we 

When the difference between H, and 
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§ 6.3. ASTROCORRECTION USING TWO STARS 

6.3.1. Information obtained f rom telescopic 
observations. Astrocorrect ion techniques 

The principal element of an as t rocor rec t ion  system i s  the telescope, 
which fixes the direction to the s t a r .  Let us  f i r s t  s ee  what information can 
be obtained with a telescope mounted on an inertial  platform. 

FIGLIRE 6 . 5 ,  

Consider an inertial  system using a f r ee  gyroscopically stabilized plat- 
form, with axes  Qxyr (F igu re  6.5) rigidly fixed to it. 
mounted on the platform, with their  optical axes  directed along the unit 
vectors  q,  and q2,  which maintain a fixed orientation relat ive to the axes 
Oryz.  
which a r e  formed by the unit vectors  q l .  q2 pointing along the optical axes  of 
the telescopes and a unit vector q3 normal  to these two directions: 

Two  telescopes a r e  

W e  introduce the oblique axes q1qLq3 with their  origin a t  the point 0, 

41 x 42 (6.39) 43=-’ 

where B is the angle between q1 and qz, so that 

cos 8 = q1 . q*. (6.40) 

The axes qlq2q3 a r e  the covariant ( o r  fundamental) base vectors .  
W e  a l so  define the contravariant base vectors  q1qLq?, so that 

(6.41) 
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Inserting the expression for  9 from ( 6 . 3 9 )  in (6.41) and using (6.40), u.e 
find 

I 
I 

I 

, I  

9' 7 x i 9 1  - 9-LYiSBh 

9.:- __ lq& - 9,  io, 81, 9' 9 

From the definition of the vectors ql .  4.. 9 ,  and 9 ! .  9'. 9%. we have 

9;  . ~ ' - = I J  for  s = k .  I 
q ,  . 9  = I .  J 

16.42)  

( 6 . 4 3 j  

'IVe a l so  introduce right orthogonal axes  . 4 1 x 1 ~ t z i  and .-i-.~'p:~ fixed to the 
focal planes of the teleacopes.  
telescope axes  9 ,  and 9 ,  the axes  and :? a r e  directed along the telescope 
axes,  and the planes .-I xi)" and .-I2.r2;,*J are the focal planes of the f i r s t  and 
the second telescope, respectively.  The axes yl and ~1 a r e  coplanar with 
the vectors 9 , .  q.., s o  that the axes  .vi. x J  a r e  normal  to the plane spanned by 
these vectors.  

If XI# y ' .  zi and x?, y', I-) a r e  the unit vectors along the axes XI, .vi. z i  and 
x:, y2. 

The points of origin . I ,  and A, lie on the 

w e  have the obvious equalities 

f 6 . 4 1 )  

Let the initial orientation of the platform and the directions q i ,  q2 be s o  
chosen that the telescope axes  9 1 , ~ ~  a r e  initially a imed exactly a t  the two 
s t a r s  st and s2. 
plane of the telescopes, a t  the points .-II and A:, i.e., on the optical axes  of 
the two telescopes.  If a n  ideal stable platform is used, which maintains a 
fixed orientation in space, the images of the stars will c lear ly  r ema in  al l  
the t ime a t  the points A ,  and A:. 

change their  orientation relat ive to the initial attitude, which is designated 
O.v'.?*z*+ 
and the image of these s t a r s  in the focal plane will shift to some  point 
character ized by the coordinates xi, .vl and x2. y'. 

elements in the focal plane of the telescopes. 
information that as t roncmical  observations can provide for  navigation 
purposes. 
f rom its initial attitude. 

to i t s  initial attitude. 
of the axes  xly'zl  and .r2y?z? f rom the initial .r1*y~*z~* and +J+z?*. The  displace- 
ments XI, y1 and x2, y? of the images of the s t a r s  s, and s2 in the focal plane 
of the two telescopes are proportional to the projections Oy,. Ox) ,  ey?, Ox> of the 
vector 0 on the corresponding axes: 

The images of these s t a r s  a r e  then formed in the focal 

If, however, t he re  i s  gyro drift,  the platform and its axes Oxpr  will 

The telescope axes  q, ,  q2 w i l l  no longer a im exactly a t  the stars sI. s2, 

The  coordinates XI, j1 and x?. ?'' can  be measured using photosensitive 
They constitute a l l  the 

These measurements  c lear ly  give the deviation of the platform 

Let (--OJ, a s  before, be a sma l l  rotation vector of the platform relative 
The s a m e  vector c lear ly  cha rac t e r i zes  the deviations 

(6.45) 

where u is the proportionality coefficient. 
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F rom (6.45) we have 

- 1  (6.46) O y  = H . q? s in  B == 0 2  s in  8. 

Oy* = 0 . 41 sit1 B = 0' sin B, 
oA, 
o , ~ ~  = t~ . 4% 

. q3 = 8" 
o q .  j 

Here 81, W, 0 '  a r e  the contravariant components of the vector 0 in the 
directions 9,. q2. q3. s o  that 

e = q,et, (6 .47)  

where the summation over s goes from 1 to 3 .  
From (6.45), (6.46) we s e e  that knowledge of the coordinates XI,  ) a i ,  x2. JJ of 

the displaced s t a r  images in the focal plane of the two telescopes i s  equiva- 
lent to knowledge of the contravariant components of the gyro drift vector* e 
along the vectors q I ,  q2, ql: 

8 ' = x -  u a , " B '  O L = - - X '  u s , n B  * 03=-.L=-Y. (6.48) 
a 

The drift vector 0 i s  represented according to Eqs. (6.47) ,  (6.48) by two 
equivalent expressions: 

(6.49) 

Hence it follows that simultaneous determination of the coordinates yi and y2 
is redundant: only one of them should be measured. 

jections H,, O y ,  €$ of the drift vector 0 on the stable platform axes.  
f i r s t  equation in (6.49) we get 

Representation (6.49) enables u s  to find f rom known X I ,  yi, x Z ,  y2 the pro- 
F r o m  the 

Similar expressions a r e  obtained f rom the second equation in (6.49). 
Eqs. (6.50) include sca l a r  products of the unit vectors x. y .  z of the stabIe 
platform axes  with the unit vectors ql ,  q2, q3, i.e., the direction cosines of 
the angles between the vectors q l ,  q2. q3 and the axes x, y. z .  These  direction 
cosines a r e  known. For a stable platform, when q1.q2,  and therefore a l so  Q? 
have a fixed orientation relative to the platform, these direction cosines a r e  
constant. 

Let u s  now consider an iner t ia l  sys tem using a controlled (not f ree)  gyro- 
scopically stabilized platform (or gyroframe).  

At a f i r s t  glance, this c a s e  appears  much more  complex than the caae  of 
a f r e e  stable platform. 
the controlled platform i s  variable relative to the s t a r s .  

After all,  the orientation of the axes Oxyz  fixed to 
The  directions 

* Here and In what follows the vector I3 IS called the drift vector only for brevity; actually (- U LO the 
drift vector. 
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91. 9: therefore  cannot r ema in  rigidly fixed to the platform. The  orientation 
of the telescope axes  relat ive to the platform axes  should thus be a function 
of t h e  platform attitude relat ive to the axes E,, 9. 5, or ,  equivalently, 
relative to direct ions to the distant s t a r s .  Since the orientation of the plat- 
form relative to the axes  :.. %. :, is a function of the coordinates that the 
inertial  sys t em measures ,  the attitude of the telescope axes  relat ive to  the 
platform i s  a l s o  dependent on these coordinates.  

The inertial  sys t em m e a s u r e s  the coordinates with ce r t a in  e r r o r s ,  
which a r e  a function of the gyro e r r o r s  a s  well a s  the e r r o r s  of a l l  the other  
sys t em elements ( acce le romete r s  included). 

-4t a f i r s t  glance these errors s e e m  to be c a r r i e d  ove r  to telescope 
pointing e r r o r s ,  and the coordinates XI, yt, x2. :$ of the s t a r  images in the 
focal plane thus no longer depend only on the gyro e r r o r s .  

r ema in  in fo rce  for  a controlled platform a s  w e l l .  
however, should be t reated a s  var iables  and the angle 0 is identified with 
the vector enter ing the second group of e r r o r  equations (1.96).  
controlled gyroframe,  this vector is determined only by the gyro e r r o r s  
Am,. Am,. Am2, just a s  f D r  a s table  platform. 

equations give the projections of the orientation e r r o r  vector e, of s o m e  
axes  x,*z> whose unperturbed position relat ive to the axes  E.. q*, i s  defined 
by the direction cosines  ai,(;., a, $). 
axes  i s  thus a known function of the coordinates measured by the inertial  
sys t em.  The r ight-hmd s ides  of Eqs.  (1.116) therefore  contain the errors  
i j r .  I),,. +I2 associated only with gyro e r r o r s  ( in  virtue of the second group of 
e r r o r  equations), a s  ,well a s  t e r m s  due to the e r r o r s  I?!,. hq,, x, of position 
measurement .  

unperturbed state the.;e axes  a r e  caged to the directions q;, 9: to the stars 
sl .  -cI, and their  unperturbed orientation relat ive to the axes  :,. Q .  Z. is there-  
fore  invariable. Thus, 
we get 

1, (6.51) 

.A m o r e  detailed examination shows, however, that Eqs.  (6.48)-(6.50) 
The vectors  qt .  9,. 9 3 ,  

For a 

T o  check the validity of this proposition, consider Eqs.  (1  .I  16). These  

T h e  unperturbed orientation of these 

We can  now apply Eqs. (1.116) to the axes  Ox'y'; '  and O.c'y'z?. In the 

In Eqs.  (1.116) we may therefore  take ( I , ,  =cons t .  

e, , ,=-e, , ,  o I , , = - t ) , . ,  
e:,. = - e+. e,,.= - O , ? ,  I 

a s  required.  The  s a m e  re su l t  can be obtained f rom Eq. (1.122) .  
S t a r  observations rhus fix the vector tl which e n t e r s  the second group of 

e r r o r  equations (1.96:r. Hence, if tl  is known, we can  find from Eqs.  (1.96) 
the instrumental  vector error Im in the determination of the absolute 
angular velocity of the platform axes.  In projection onto the platform axes 
x. y .  2, we have 

(6.52) 

The  components (6.52) can  be applied to c o r r e c t  the gy ro  readings.  
However, if .hr. Am,,, l m z  are fo rmed  f rom (6.52), the projections Br. tl,,. 8, 
and hence XI, yt, x2, yz, should be differentiated. But the s y s t e m s  
measuring the coordinates xl, P*. x2. yz  operate  a t  high gain and high noise 
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level, s ince the luminous fluxes a r e  exceedingly small .  Differentiation of 
x1, y'. x2,  yz therefore  involves considerable difficulties, and gyro cor rec t ion  
sys tems a r e  generally designed a s  se rvo  sys tems which t rack the s t a r  
and keep the angle 8 at zero .  The fundamental principles of these tracking 
sys tems a r e  discussed in the following subsections. 

6 . 3  2 .  Simultaneous l inear  correct ion using two s t a r s  

W e  w i l l  d iscuss  in some detail the as t rocor rec t ion  of gyro e r r o r s  in an 
inertial  sys tem using a gyroscopically stabilized platform. Telescopic 
observations of two s t a r s  provide the coordinates X I ,  y1, 9, y2, so that f rom 
Eqs.  (6.50) the components 8,. Or,  

The equations of motion of a gyroscopically stabilized platform without 
as t rocorrect ion constitute the second group of e r r o r  equations (1.96). In 
projection onto the stable platform axes, these equations take the form 

a r e  calculated. 

d, = Am,r, 6, =Am, .  d, = Am,. (6.53) 

Eqs.'( 6.53) correspond to the vector equation (1.93): 

d e = A m ,  
df 

(6.54) 

Here  the vector 8 is the drift angle (a sma l l  rotation angle) of the plat- 

The f i r s t  group of e r r o r  equations of an autonomous sys tem reduces to 
form,  and Am is in fact the drift  velocity of the s table  platform.* 

the vector equation (1.92): 

(6.55) 

where 6r=bxx+byy-+-bzz, and x ,  y ,  z a r e  the unit axes  of the s table  platform 
without drift .  

group of e r r o r  equations has  a different form,  but a t  the present  s tage this 
is of no consequence. 

For inertial  sys tems with a l t imeter  and Doppler correct ion,  the f i r s t  

Eqs.  (6.54), (6.55) a r e  supplemented in our  case  by thealgebraic  re la t ions 

br, = 8 x r .  br2 = 6r j- brl. (6.56) 

where 

6r l  = 6x,n + 6y,y + bz,z. 
br2 = bx2x + by,y + 6z,z. 

These relat ions give the total position e r r o r  6r2. 

Examination of Eqs .  (6.53)-(6.56) suggests  the following methods for  the 

Eqs .  (1.116) in our c a s e  
lead back to Eq. (6.54), and thus do not add anything new. 

application of the measured  quantities e x ,  Oy. to inertial  system correct ion.  

* More precisely, minus the drift velocity. 
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and subtract  them f r o m  the coordinates measured by the iner t ia l  system. 
The  coordinate e r r o r s  a r e  then reduced to the Ox,  hy.  b= obtained f rom the 
f i rs t  group of e r r o r  c,qua:ions, which follow from the vector equation(6.55). 
In this c a s e  we essentially do not interfere  with the normal  operation of the 
inertial  sys t em,  and only c o r r e c t  i t s  output. The information on I) , ,  u , .  tiz in 
this c a s e  is incompletely utilized. The orientation of the gyroscopically 
stabil ized platform i s  left uncorrected.  The f i r s t  group of e r r o r  equations 
s t i l l  contain t h e  t e r m s  h i y ,  Ant, on the right.  They correspondingly 
en te r  the position e r r o r s  h x ,  6.v. k ,  although they do not produce any e r r o r  
components which inc rease  in proportion to t ime ( a t  least  not for  constant 
lm,,. \m>. hz). 

T h e r e  is ,  however, an alternative approach to the problem. Differentiat- 
ing the projections t , ,  e,. Br obtained from the telescopic measurements ,  
w e  find Itn,< \m,, Am, f rom Eqs.  (6.53) and fo rm suitable compensating torques, 
i.e., torques which when applied to the gyroscopes of the s table  platform will 
make it p recess  a t  an angular velocity canceling the dr i f ts  l m x .  .hy. Amz. 
Simultaneously using the initial values 6';. e:, tu'', we see that the equations of 
the second group (6.53) completely drop Gut f r o m  among the e r r o r  equations, 
and the t e r m s  A m , ,  Amz disappear f rom the right-hand s ides  of the e r r o r  
equations of the f i r s t  group, derived from the vector equation (6.55). Th i s  
is the approach ensuring most comprehensive utilization of the information 
supplied by the telescopes.  However, it involves differentiation of XI, .r2, y l ,  

y2,  which a s  we have noted before is a difficult undertaking in practice.  
The third approach is to use  the components e x ,  O y ,  0, obtained f rom tele- 

scopic measurements  in forming suitable control torques which, when 
applied to the platform gyros,  will reduce XI, y t9  x 2 ,  y? and thus a l so  Ox, 0,. 13, 
to zero.  
tained in a n  attitude with the optical axes of the telescopes aimed at  the 
relevant s t a r s .  

the s table  platform proportional to e x ,  0,. e r ,  i.e., proportional to the right- 
hand s ides  of (6.50). Then 

In other  words, the s table  platform should be constantly main- 

The  s implest  method h e r e  is to make the correct ion torques .\f;, .VI;, .\I: of 

.\It = - H:kO,, .)I: = Htkd,. .\f: = H?kO1. (6.58) 

where H I .  H,. .ti, a r e  the angular momenta of the gyroscopes, and k is s o m e  
constant factor.  

The equations of motion of the platform (6.53) then take the fo rm 

which i s  equivalent to the vector equation 

(6.59) 

(6  -60) 

18 I 
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The solution of equation (6.60) is obviously 

I 

e =  J" A m ( ~ ) e - k ( f - - r ) d T + e o e - * f .  (6.61) 

Here  the integral over  the vector i s  a new vector whose projections on 

0 

the axes  x ,  y ,  z fixed to the s table  platform a r e  equal to the integrals  over  
the corresponding projections of the integrand. The expression for 0, 
therefore  has  the form 

e, = / hm,(T)e-k( ' - r )dT+eO xe - k l  . (6.62) 
0 

The expressions for  Or,  8, a r e  ent i re ly  analogous. 

orientation e r r o r  is eventually reduced to zero .  
bounded, [ A 0 1  is a l so  bounded. 

F r o m  Eq. (6.61) we s e e  that for  R > 0 and Am = 0, the initial platform 

Indeed, f rom (6.61) w e  have the es t imate  
If Am # 0, but 1 Am I i s  

o r  

Thus, a f te r  some t ime ( f rom the beginning of the correct ion routine), 
which depends on the factor  k, the exponential t e r m s  on the right in 
inequality (6.64) a r e  damped and we a r e  left with the est imate  

(6.65) max [ A m  I 

Taking a sufficiently la rge  R ,  we make 10 I so smal l  that the e r r o r s  6z,, 
6 x , ,  6 ~ ,  become ignorable. 
only by the solutions of the f i r s t  group of equations. 
s e e  that in the equations of the f i r s t  group Amx, Am,. Amz on the right should 
be replaced with 

The inertial  sys tem e r r o r s  a r e  then determined 
F r o m  (6.60), (6.54) w e  

(6.66) 

If Am,. Am,, Am, a r e  constant, we see  f rom (6.66) that some time af te r  the 
beginning of the correct ion routine 

Ami = Am: =Am: = 0 .  (6.67) 

Note that the res idua l  e r r o r s  

(6.68) Am Am 
X -  k ' Y -  k z k  

e -% e -2, 

obtaining for constant Am.v+ Amy+ Amz can be applied to determine the constant 
drift components of the s table  platform, and in principle the perturbing 
action of these constant components between successive applications of the 
correct ion routine can be compensated. 
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The  res idua l  errors can be a l so  eliminated by introducing additional 
cor rec t ing  torques proportional to  the integrals  over  O x ,  tly. 
(6.58) are  replaced by 

Then Eqs .  

(6.69) 

and Eqs .  (6.60) give 

g T k l J T k _ ,  [ e d f = h f .  (6.70) 

The  charac te r i s t ic  equation corresponding to the l inear  integro- 

d t  " 

different ia l  equation (6.70) is 

p ' - k p - r k - , = d .  (6.71) 
For  

k ! -  ut-! > 0 (6.72) 

the charac te r i s t ic  equation has  two negative roots: 

k ' k  p ,  2=->.,,2=-Tx 1 , - -k - , .  

The solution of Ey. (6.70) has  the form 

(6.73) 

(6.74) 

Integration by pa r t s  gives  

If I Am 1 is bounded, 1 fl I is aIso bounded, as in the preceding case. 
For constant .\m, the angles  0 and 6 can  be taken constant a f te r  s o m e  

t ime t ,  from the beginning of the cor rec t ion  routine, when the t rans ien ts  
have passed.  F r o m  (6.70) we have in  this case 

k - ,  1 OdL'=Am, (6.76) 

i.e., the constant cornponent of the vector  Am i s  continuously compensated 



by the built-up integral. 
correct ion routine i s  terminated . 
right in e r r o r  equation (6.55) should be replaced by the vector 

It naturally s t ays  compensated when the a s t r o -  

Comparison of Eqs.  (6.54) and (6.70) shows that the vector Am on the 

I 

Am’ = Im k~ - h _ ,  1’ 0 d t .  (6.77) 

F r o m  (6.76)  w e  s e e  that af ter  the t ransients  

,Am’ .== 0 (6.78) 

and the gyro e r r o r s  drop out f rom the f i r s t  group of e r r o r  equations as well. 

normally f r ee  gyrostabilized platform. 
using a controlled gyroplatform. 
considered for  a f r e e  gyroplatform a r e  equally applicable to the controlled 
case .  

of - Im.?. - A m , ,  - \m, f rom the measured values of X I ,  SI. X I .  y2 and their  
derivatives - a r e  a s  self-evident for  the controlled platform a s  before.  

W e  have seen in the preceding subsection that Eqs.  (6.47)-(6.50) r ema in  
valid for  a controlled gyroplatform, with the only difference that the or ien-  
tation of the vectors  4,. 4.. q1 relative to the axes  x ,  y. z is a function of the 
coordinates measured by the inertial  system and t ime.  The orientation of 
the vectors q , .  q2, ql  re lat ive to the axes  E.q*Z.$ on the other hand, r ema ins  
invariable, as i n  the c a s e  of a free stable platform. 

This  concludes our  discussion of as t rocorrect ion in a sys t em with a 
We can now proceed to a sys t em 

We will see that the correct ion techniques 

The f i rs t  two techniques - correct ion of the sys t em output and formation 

Eqs. (6.53) a r e  now replaced by Eqs .  (1.96): 

I 6 ,  -+6>vOz - ( ~ 1 ~ 0 , .  = Am,r. 

6, + o2eX - mrUz =Am,. 

6, + - oyex = Am,. 

or by the equivalent vector equation 

f 6 >  >< t) = h, (6.80) 

where dot denotes local differentiation with r e spec t  to  t ime in a moving 
system of coordinates Oxyz, rigidly fixed to a platform which rotates  with 
angular velocity o. 

Consider a l inear  correct ion routine. The  torques M?. .W;. Mt a r e  taken 

(6.79) 

(6.81) 
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where the components 11' a r e  obtained using the known .vl. y!. x?, y? f rom 
Eqs. (6.48), and the s u m  over  s goes f rom 1 to 3 .  

the control torque t r ans fo rms  the vector equation of e r r o r s  of the second 
group (6.80) to the fo rm 

Application of these correct ing torques to the gyroscopes together with 

or , a Iter na t ively , 

(6.83) 
J H  , 
_- , I t  

kH A k - ,  1 0 df = \m 

The integral  i n  the third t e r m  on the left, a s  we see f rom (6.81), i s  taken 
over  t h e  directions 4,. These  a r e  fixed directions in the axes  O:.ti*;, and the 
integration i s  thus equivalent to integration along the unit vectors E,+ 'I. 5,. 
Eq. (6.83) i s  thus expressed entirely in the fixed-orientation axes O:,~L:.. 
Naturally, if t h e  vector \m i s  physically determined by i t s  projections on 
the axes  orp:,  Eq. (6.83) contains the corresponding expressions projected 
onto the axes  O L , ~  Z , .  

considered in connection with a s table  platform. 
(6.75).  If the vector \m is constant in the axes  O;.q.:,, Eq. (6.76) and all that 
follows f rom it remain valid. 

correct ion of a contrcmlled gyroscopically stabilized platform. 
however, i s  only one of s eve ra l  possible solutions. 

fo rm 

Eq. (6.83) is forms.lly and essentially identical with Eq.  (6.70) previously 
I ts  solution is given by 

The correct ing torques (6.81) thus solve the problem of l inear a s t r o -  
This,  

Another solution can be obtained by taking the correct ing torques in the 

(6.84) 

where 

(6.85) 

Eq. (6.82) is then replaced by 

t 

d + k e + k - t  ) ' e d t = A m .  (6.86) 
j 

In distinction f rom Eq. (6.83), the differentiation and integration h e r e  are 
taken in the axes  x ,  y. z fixed to the controlled gyroplatform. Eq. (6.76) in 
this  c a s e  r ema ins  valid if the vector Am is constant in the axes O X ~ Z  fixed 
to the iner t ia l  platform. 
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6.3.3. Simultaneous "relay-type" 
correct ion using two s t a r s  

In the preceding subsection we considered astrocorrect ion of a f ree  or 
controlled stable platform with the correct ing torques applied to the platform 
gyros formed a s  l inear  functions of O x ,  0,. 0, and their  integrals .  Linear 
correct ion of this kind presupposes knowledge of the coordinates xi, y i ,  x ? ~  p 
of the s t a r  images in the focal plane of the telescopes. 

However, the commonly used phase systems" only give the signs of the 
coordinates X I .  y1, x Z .  y2 and their ra t ios  x i / y l .  x 2 / 3 .  Let us  s e e  how the 
correct ion i s  accomplished in this case.  

form.  Assuming the signs of the coordinates xi ,  y ' ,  x2. y' known, w e  will 
form correct ing torques which cancel the platform drift, i.e., keep the 
coordinates X I ,  y1, x2, y2 zero .  

F r o m  Eqs.  (6.48) we s e e  that x 2 ,  X I ,  y1(y2) a r e  proportional to the contra-  
variant components 8'. 0'. 83 of the vector 0 along the vectors qi .  qr.  q l .  
Therefore,  if s in B > 0, we have 

F i r s t  let us  consider the case  of a f r ee  gyroscopically stabilized plat- 

1 sign x2 = sign 81, sign X I  = - s ign  81. 
sign y1 = sign y2 = - s ign 8'. \ 

On the other hand, Eqs.  (6.53) a r e  c lear ly  equivalent to the system 

d l  = Aml. 6 2  = 4m2. d l  = Am,, (6.88) 

where Am1, Am2. Am3 a r e  the contravariant components of the gyro e r r o r s  Am 
along the s a m e  vectors ql .  q2, q,. 

requi re  only three t r iads  of correct ing torques M i l ,  M i l .  M i l ;  M$, M L -  Mi2;  M& 
M:,, M:,, such that each t r iad  is reduced to precession about the directions 
ql, 42. 43. 
accordance with the signs sign xi, sign x2, sign yl(sign y2) of the coordinates 

Comparison of Eqs.  (6.87), (6.88) shows that for  correct ion purposes we 

These t r iads  of torques should be appropriately commuted in 

x ' ,  x*. Y'(Y2). 

Let H I  = H2 = H3 = H .  Then clearly, for the relevant torques 

(6.89) 

Hence 

(6.90) 

We form the torques 

(6.91) 
MI, = Mi sign x2 = - H k q ,  sign xz, 
M,. = M 2  sign x1 = Hkq,  sign xi8 
M, = M, sign y1 = H k q ,  sign yi  (= I, sign y2 = Hkq,  sign yz). 

* The phase systems are discussed in more detail in the next section. 
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The  contravariant components of the resultant correct ion vector 

rM = MI, + M,, + M, (6.92) 

a r e  now given, in virtue of (6.87), by 

(6.93) I 11' = - ~k siqn 8' .  .I!' = ~k sign 8'. 
,!I' = H k  sign 03. 

The application of i.he torque .H to the s table  platform now leads instead 
of (6.88) to the following equations of motion: 

(6.94) 

F r o m  these equations we see that for  

the deviations 81, 02. €It, and thus a l so  xi, x2, y', y2 a r e  eventually reduced to 
zero.  

values of 8 ' .  O?, 0'. 

signals )it. y,, y1 using this t ime not the equalit ies 

Eqs. (6.94) predict  undamped oscillations (sliding motion) near  the z e r o  

T o  avoid these oscillations, w e  can introduce additional commutating 

!+, =sign 81, p2 =sign W, p, = sign 03, (6.96) 

but a different system: 

(6.97) 

In this case,  t he re  is a dead (insensit ive) zone of dimensions cxcxc 
around the point XI = x? = y' = 0 a s  in a normal  mechanical relay, and the 
s t a r  image r ema ins  inside this zone. 

zone, the projections Amx5 I m y ,  Im, can  be taken equal to z e r o  in the f i r s t  
group of e r r o r  equations, a s  in the c a s e  of l inear  correct ion.  

F r o m  (6.48), (6.94), (6.95) we see that the performance of the relay-type 
correct ion sys t em depends on the angle B between the directions to the two 
reference stars. The  s m a l l e r  the angle B ,  the l a r g e r  the value of IAm' I  for  
a given I l m , ,  and therefore  k should be increased.  However, the perfor-  
mance of l inear  s y s t e m s  a l s o  deter iorates  a t  s m a l l  angles B .  We see from 
(6.50) that for  s m a l l  values of sinB, s m a l l  values of the coordinates x1, X J  

may correspond to l a rge  values of 0,. 1 3 ~ .  O , ,  i.e., the effective sensit ivityof the 
correct ion sys t em is lowered a s  the angle B between the observed s t a r s  i s  
made sma l l e r .  

Apart f rom the (gen.-rally small)  e r r o r s  associated with the insensit ive 
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Consider relay-type correct ion f o r a  controlled s table  platform. By analogy 
with Eqs .  (6.89)-(6.91), w e  form the correct ing torques using the equalities 

= - H k x  . q ,  sign 0'. 

(6.98) I M: = t iky . q, siqn o', 
151: = H k t  . q, sign U', 

where the products  x .  q,. Y .  q,. 
they a r e  some functions of t ime and position. 

vectors  q l ,  q2, q ,  we again obtain Eqs.  (6.94) and al l  the conclusions that 
follow. 

' 4 ,  a r e  no longer constant, a s  in Eqs. (6.90): 

F o r  the contravariant components 01, 0 2 ,  OJ of the vector 0 along the 

6.3.4. Alternate two-star cor rec t ion  

The previous l inear  and relay-type correct ion sys tems made use  of two tele- 
scopes fo r  simultaneous observation of two s t a r s .  A different approach to 
the problem is a l so  possible: one telescope is al ternately used to observe 
two s t a r s .  In this arrangement  the telescope can be periodically switched 
from one s t a r  to another, i.e., its optical axis  is moved f rom position 9,  
pointing to the f i r s t  s t a r  to position q2 pointing to the second s t a r .  
possibility is to keep the telescope axis fixed, while a l ternately projecting 
the images of the two s t a r s  onto the optics (with special  m i r r o r s  or pr isma-  
tic systems,  say).  

that the correct ion torques reducing to ze ro  the deviations X I ,  y1 of the f i r s t  
s t a r  image f rom the center  of the focal plane must not increase  the coordi-  
nates ~ 2 ,  y2 of the second s t a r  image. 

The relay-type cor rec t ion  routine c lear ly  satisfies this requirement  and 
therefore  can be readi ly  extended to the case  of a l ternate  correct ion.  
Indeed, the torque k sign O1 entering the f i r s t  equation (6.94) reduces to zero 
the component €11, and hence the coordinate x 2  a s  we s e e  f rom the f i r s t  equa- 
tion in (6.48). The platform in this ca se  p recesses  about the axis  q l ,  a s  w e  
s e e  f rom the f i r s t  equality in (6.89), and the coordinates XI, y1  do not change. 
The torque k sign P i n  the second equation in (6.94) reduces to zero  the 
coordinate X I  ( see  second equality in (  6.48)). The platform precesses  about 
the axis  q 2 ,  and the coordinates xz .  y2 therefore  do not change. Finally, the 
torque k sign O3 simultaneously reduces to ze ro  the coordinates y l .  y 2 ,  i r r e -  
spective of which par t icular  s t a r  is used for  cor rec t ion  purposes.  
considerations a r e  c lear ly  valid both for  the f r ee  and the controlled s table  
platforms. 

The l inear  cor rec t ion  routine descr ibed in the preceding is readi ly  seen  
to  apply to a l ternate  two-star cor rec t ion  of a stable platform. Indeed, when 
only the f i r s t  s t a r  sighted, x* drops out f rom Eqs. (6.50) and the correct ing 
torques (6.69) thus take the form 

Another 

In e i ther  case,  a fundamental principle in a l ternate  two-star sys t ems  is 

The above 



(6.99) 

where, by (6.50), (6.48) 

(6.100) 

The expressions for  the torques .\I;. .\I.:. .\I: when the second s t a r  i s  
sighted differ f rom Elqs. (6.99), (6.100) only in that q-0: i s  replaced by q,tl'. 

During the f i r s t - s t a r  cor rec t ion  interval  Eq. (6.70) i s  thus replaced by 
the equation 

I 

2 ,it - - ~ ( 9 , w + - q ; t ~ ' l + - k - ,  ( ' ( q 2 v ~ + q 3 v ~ d t = i m .  (6.1 01) 
d 

This  vector equation is c lear ly  equivalent to a sys tem of s c a l a r  equations: 

I 

0  nil.  M MI?+^-, 1 ~ ' l i t = ~ m ' .  
I (6.102) 

t 

i i r -~-k03-k-~ f o3dt=im3.  
I 

The solution of each of the last  two equations in  (6.102) is analogous to 
the solution (6.75) of I3q. (6.70). 
the f i r s t  equation in (6.88). Using Eqs .  (6.48), w e  conclude that tracking 
the f i r s t  s t a r  reduces  the coordinates  XI. .VI (and  thus a l so  y 2 )  to ze ro .  
coordinates .+ i s  not affected, i.e., it  var ies  a s  i f  there  w e r e  no cor rec t ion  
of the  other  coordinates .  
s ta r :  the coordinates x?. y? a r e  zeroed and x* is not affected. The position 
c lear ly  does not change if the coefficient k-, in Eqs.  (6.99) i s  ze ro .  

Correc t ing  torques formed in accordance with Eqs .  (6.81) a l so  solve the 
l inear  cor rec t ion  protslem with a l te rna te  s t a r  tracking in sys t ems  with a 
controlled (and  not f r e e )  s tab le  platform. Correc t ing  torques corresponding 
to Eqs.  (6.84), on the other hand, a r e  inapplicable to a l ternate  a s t r o c o r r e c -  
tion, s ince these equations contain on the right the projections 0,. 0,. flz 
which, in accordance with (6.50), a r e  functions of the coordinates  of the two 
images simultaneously.  

It follows f rom the preceding that simultaneous and a l te rna te  observation 
of two s t a r s  through te lescopes permi ts  cor rec t ing  the gyro  e r r o r s  in 
inertial  sys tem.  

responsible  for  W, W. 
direct ion to the s t a r ,  i..e., the e r r o r  01, is not affected. Tota l  cor rec t ion  
of gyro e r r o r s  is therefore  impossible  by tracking a s ingle  s t a r ,  and s o m e  
additional guidance information is required.  

The  f i r s t  equation in (6.102) coincides with 

The  

A s imi l a r  resu l t  is obtained by tracking the second 

Tracking a single s t a r ,  s, say,  c o r r e c t s  only the e r r o r  component 
The  precess ion  of the iner t ia l  platform about the 
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6.3.5. The correct ing torques 

Eqs.  (6.50), (6.58), (6.69), (6.81), (6.84). (6.90), (6.98), and (6.99) f rom 
which the correct ing torques a r e  formed contain the unit vectors  q, ,  q2, qJ. 
or more  precisely the projections 9i. x .  qi . y .  qi. z of these vectors  onto the 
inertial  platform axes. 
directions of the two s t a r s  used in as t rocorrect ion,  and the vector qJ i s  
expressed in t e r m s  of 91 and q2 by Eq. (6.39) .  

the platform axes in two par t icular  cases:  when the unperturbed axes main- 
tain a fixed orientation or when they coincide with the co-moving geographi- 
cal, geocentric, and orthodromic axes.  

Having chosen the s t a r s  s, and s2 for  as t rocorrect ion,  w e  fix the directions 
q1 and 92 in the Ear th ' s  coordinate system 0,tq; at the initial t ime.  
defining relat ions of the vectors  q, and q 2  in this system a r e  given in §6.2. 
Let the initial direction of vectors q l ,  q2 ( a t  the t ime t') be described by 
the following direction cosines: 

The vectors q1 and q2 a r e  the unit vectors  in the 

We will now give a method for  calculating the projections of q ,  and q2 onto 

The 

5 9 5 
q1 C O S ~ P ; ;  cos L?* cos cpC sin LL sin q;: (6.103) 
q2 COS cos L;* cos sin s i n  vi:, 

where 9;:. .pi:. A:,, 2.;. a r e  the geographical latitudes and longitudes of q, and q 2 .  

initial position relat ive to the axes 0 , ~ q :  is clear ly  given. 
by the direction cosines  

If the inertial  sys tem uses  a f r ee  gyroscopically stabilized platform, i ts  
It i s  described 

E, tl 5 
x COS 9:" COS L: coscpf sin L: sin (p:" 
y COS 9; COS L$ cos q r  sin L; sin 9: 

z COS 9:' COS L! cos cpio sin I.: sin 9:". 

Since the axes x. y, z re tain a fixed orientation in space,  we obtain 
the following mat r ix  of direction cosines for  the t ime t* (assuming the Ear th ' s  
spin u to be constant, invariably pointing along the axis  0'5): 

5 tl t, 
Y c o s q f c o s  (L:- ut? coscprsin(h$- ut? sinq; 

y COS cpf COS (A; - ut? COS cpr sin  LO^ - ut? sin cp;" 

z COS 9:" COS (L; - ut? co~cp:~sin (A: - ut? sin cpr. 
Matrices  (6.105) and (6.103) completely define the projections of the 

vectors  q l ,  q2 (and hence of q3) on the platform axes x, y. I a t  the initial t ime 
t'. Since the axes n, y ,  z re ta in  a fixed orientation, these projections 
remain  constant a t  any time. 

If the unperturbed orientation of the axes x. y. z of the inertial  platform 

(6.104) 

(6.105) 

coincides with the co-movi 
the 0,Eqb axes  is described 
together with mat r ix  (6.103) define the projections of the vectors  9, .  q2 on the I 
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axes .r. y. I a t  the initial t ime t ' .  
assumed constant (cont ra ry  to the previous case) .  
we extract  f rom mat r ix  (6.103) the following submatr ix  of direct ioncosines:  

In what follows these projections a r e  
T o  find these projections 

'1 

q, cosfp;:cos ~ i~ i ' . -uu( t - t *~1  cosq::stn f> . , , -u( ( t - t*)J  sinpi: 

q2 cosrFljcos[h2,-uu(t--*)l cosq;: >in [> . , , -u ( ( t - ( t *~ j  cos'&, 

(6.106) 

The projections of q1 and q2 on the co-moving geocentr ic  and orthodromic 
axes  a r e  s imi la r ly  ot ta ined.  
and (1.16) should be considered jointly with (6.106) and (1.10).  

In these cases ,  the direct ion cosines  (1.14) 

§6.4. ASTROCORRECTION WITH PHASE 
INDICATION OF STARS 

6.4.1. The principle of phase indication 

In the previous sect ions we considered as t rocor rec t ion  involving tele- 
scopic observations of two s t a r s .  These  observations measured  the coordi-  
nates x i .  yt. d, 9 of tt.e s t a r  images in the focal plane of the te lescopes or at 
least  determined the i r  s igns.  

S ta r  indication, i.c., determination of the coordinates XI, yl. .?, y ' ,  can  be 
ca r r i ed  out with the aid of photoelectric ce l l s  mounted in the focal plane of 
the telescopes. Vidicon or Superorthicon tubes can be used. By orienting 
the two perpendicular sweeps along the axes  xt(.r2) and p ~ y ~ t ,  we obtain the 
coordinates  xi. yl, xLV y2 in t e r m s  of proportional t ime intervals .  

Another example o.f c i rcu i t s  measuring the coordinates XI. y'. .vz. y' a r e  
the so-called phase c i rcu i t s .  H e r e  a photocell or some other photosensitive 
device i s  mounted in the focal plane and the light f rom the s t a r  i s  modulated 
by a mechanical chopper.  
(F igu re  6.6), which compr i se s  a t ransparent  disk with one half blackened. 
lVhen this chopper ro ta tes  with angular speed m ,  the photocell output contains 

a component of frequency f = &! . 

The s imples t  chopper i s  c lear ly  a semidisk 

By isolating this var iable  component with 

a narrow-band fi l ter ,  we c lear ly  obtain a 
harmonic modulation s ignal  of the s t a r  light. 
Comparing the phase of this s ignal  with the 
phase of some m a s t e r  signal, w e  can de ter -  
mine the angular  position of the direct ion to 
the s t a r  in the telescopic field of view. 

This  sys t em general ly  does not m e a s u r e  
the deviation of the direct ion to the s t a r  
f r o m  the telescope ax is  fo r  an a r b i t r a r y  
position of the star image in the telescopic 
field, although in principle this i s  a l so  
possible. A semic i r cu la r  chopping disk 
whose t ransparency  is a function of the 
dis tance f rom the center  is c lear ly  
sufficient fo r  this purpose.  

' 

FICI'RE 6.6. 

291 



Ch. 6. ASTRONOXIICAL CORRECTION 

If the s t a r  i s  located near  the telescope axis, the modulation depth i s  a 

The photocell output signal thus 
function of the distance of the image f rom the center  of the focal plane 
(because of the finite s ize  of the image). 
contains in this ca se  information on the deviation of the direction to the s t a r  
f rom the optical axis  of the telescope. 

image in the focal plane a r e  not considered in the following, since their  

The analysis  of c i rcu i t s  with 

Television c i rcu i t s  collecting information on the position of the s t a r  

analysis  i s  a pure radio-engineering 
problem. 
mechanical choppers,  on the other hand, 
r a i se s  a number of problems whos 
requi res  the application of the methods of 
theoretical mechanics.  We will thus 
concentrate on phase sys tems with a 

The s t a r  indication circui t  (which 
Ut mechanical semidisk chopper. 
FIGURE 6.7. 

i solates  the signal received from the s t a r )  
includes (F igure  6.7) a telescope 1 with a 

chopper and a photoelectric cell,  the chopper dr ive 2, amplifier 3,  reso-  
nance f i l t e r  4, synchronous phase detector 5, and rectifying f i l t e r  6 .  A 
reference frequency o i s  delivered to units 2 and 5. 

assumed to be ideal, and the e r ro r - f r ee  case  i s  considered, a point image 
s, will be formed in the focal plane. 
point A,  to point si make an angle rp with the axis  xl. Then 

If the s t a r  i s  regarded a s  a point source,  the telescope optics a r e  

Let (F igure  6.6) the direction from 

x' = pcosrp, y' =psincp. (6.1 07) 

where p i s  the distance f rom the s t a r  image si to the optical axis  of the 
telescope. 
halves of the chopper makes an angle I$ with the axis  XI. If the chopper 
ro ta tes  'with angular velocity o (the sense of rotation is indicated by the 
a r row in F igure  6.6), the output signal E of the photocell is given by 

Initially the dividing line between the t ransparent  and the opaque 

E = E , [ l -  signsin(ot-cp+I$)]. (6.108) 

Here  the coefficient E, charac te r izes  the brightness of the s t a r  and the 
photocell response.  

A l l  the information on the position of the s t a r  is contained in the phase rp 
of the signal (6.108), and sys tems of this kind a r e  therefore  known a s  phase 
sensitive ( o r  simply phase) sys tems.  

resonance f i l t e r  tuned to the frequency 0. 

writing p for  i t s  gain, we have for  the fi l ter  output 

The photocell output signal is amplified and then passed through a 
Assuming a l inear  amplif ier  and 

where p=pE0.  
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( ' ( insider an  ideal f i l ter ,  which only t r ansmi t s  the frequency I - ) .  p . ~ r i  i s  
a periodic function of period 2rr'o. I ts  Four i e r  expansion h a s  the f o r m  

(6.110) 

(6.111) 

Inserting (6.109) in (6.111) we obtain fo r  the coefficients of the f i r s t  
harmonics  

The  filtered s ignal  I '  thus has  the fo rm 

T h i s  s ignal  i s  delivered to a synchronous detector (F igu re  6 .7) .  A 
canimon multiplicati1.e detector multiplies the input s ignal  by s i n ( d  + a), and 
a commutative detector multiplies by s ign  s i n c d i a t .  iVriting 0,. S, for the 
w t p u t  s ignals  of a mll t ipl icat ive and a commutative synchronous detector ,  
we find 

(6.114) 

H e r e  ( L  i s  the phase difference between the detector m a s t e r  s ignal  of 
frequency 19 and the chopper m a s t e r  signal. 

The  next element in Figure 6.7 i s  a rect i f ier .  
constant component of the s igna ls  (6.114). 
Eqs.  (6.114) for P,tfr in the first equation in (6.111), we obtain for the 
constant components 

It t r ansmi t s  only the 
Inserting the right-hand s ides  of 

(6.11 5) 

In e i ther  case 5 is proportional to cos (-q +il --(!I. If the proportionality 
coefficient i s  p', we Pave 

- 
~ ~ ~ ~ ~ ' ~ ( ~ j ( - ~ ~ ~ ~ - ~ ~ ~ .  (6.116) 
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Putting 

+ - a , = ; ,  +-%=n, 

we obtain f rom (6.116) 

- - 
6' = p' sin rp, Wf = p' COST. 

Comparison of (6.118) and (6.107) shows that 

S"=Lxxl, 6/=Kyl - ( 6 . 1  19) 
P P *  

i.e., 6", 6' a r e  proportional to the coordinates XI. 

telescope focal plane. 
and their  ra t io .  
correct ing the gyro e r r o r s  in inertial  sys t ems .  

W e  have so f a r  assumed a constant 'p. All the relations r ema in  in force,  
however, if cp i s  variable, but the r a t e  of change 4 i s  sma l l  compared to w 
(this will be proved in what follows). 

of the s t a r  image in the 
Eqs.  (6.119) determine only the signof the coordinates 

However, we have seen  that this is quite sufficient for  

6.4.2. 
as t rocorrect ion sys t em nea r  the s ta te  
of equilibrium. Stability analysis 

The dynamics of a closed phase 

W e  will now consider the character is t ic  features  of the different consti-  
tuent elements of a phase sys t em and how they affect the ast rocorrect ion 
routine on the whole.* 

brightness is t reated as a function of the distance of the points of the disk f r o m  the 
center .  Let, a s  before (Figure 6.6), 9 be the angle that the dividing line between 
the two halves of the chopper makes with the axis  XI, XI =pcoscp and yI= psincp are 
the coordinates of the image center,  and ro is the radius  of the telescopic 
field of view. The illuminance E of the photocell (equal to the integral  over 
the brightness of the t ransparent  half of the copper) is then clear ly  a function 
of the distances r 0 - p  and l = p s i n ( q - + )  of the image center  f rom the bounda- 
r i e s  of the integration domain: 

We no longer a s sume  a n  ideal telescope and a point image. The image 

E = E [ r O -  p. psin  (q-+)]. (6.120) 

For a chopper rotating with frequency o, Eq. (6.120) takes the fo rm 

E = E [ro - p, psin (ot+q-+)]. (6.121) 

If a l inear  photocell is used, the output signal is 

u =  @+f (0. (6.122) 

where the coefficient p i s  a response character is t ic  of the receiver ,  and f ( t )  

* D e v y a n i n ,  E.A. Ontheequations ot trackers.-Izvestiya A N  SSSR, technical cybernetics, No. 1. 1965. 
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rtcpresents the noise, both determinate ( sky  background noise, say) and 
random (detector  noise, random background component) .':' 

Lye fur ther  a s s u m e  that the amplifier ( F i g u r e  6.7) i s  described by the 
equation 

P (0 )  I .  == R (DI u. (6.123) 

.vhere O=-$ is the d-fferentiation operator,  P t D i  and R l D i  are polynomials 

with constant coefficii?nts, I- i s  the amplifier output signal. 

equations 
The synchronous detector ,  as we know,"* can  be described by the 

(6.121) 

where It ;, U', are  the detector output signal, h( l ' )  is the nonlinear response 
of the detector ,  Otr ,  i s  a periodic function of frequency 1,). 

t ive detector 9 t r i  = sign sin(<*! 
= sincwt-rnt, where u i s  the phase error in the re ference  signal. 

pa rame te r s .  

For  a commuta- 
and for a multiplicative detector Q l r i  = 

The resonance f i l t e rs  a t  the ampl i f ie r  output are a l s o  l inear  with constant 
The i r  equations are writ ten in  the form 

(6.125) 

where 5 and q are the? output s ignals .  
Using 

Eqs. (6.58), (6.50) and seeing that the "images" of the coordinates .Y! and p 
in Eqs.  (6 .125)  are respectively the variables and 5 ,  we f o r m  the correc- 
ting torques according to the equations 

Consider the case %sf l inear  cor rec t ion  by tracking the f i r s t  s t a r .  

(6.126) 

T h e  motion of a s tzble  platform about i t s  unperturbed s ta te  i s  described, 
according to  (6.59),  by the equations 

(6.127) 

The effect of background noise on the  performance of astrocorrection systems with radial slit choppers ( in  
particular, semidisk choppen) is considered in Appendix I. 
thc last chapter. 

(Elements of Automation and Engineering Cybernetics). - Gasenergoizdat. 1962, B o l ' s h a k o v .  1.A.  
Transmtssion of regular and rmdom signals through a commutation-type phase detector. - Vestnik LLGLI, 
No.6. 19.58. 

The effect  of random noise is considered in 

** 5?c. e.g., K r a s d v s k t i ,  A.A. and G .S .Pospe lov .  Osnovy avtomatiki I tekhnicheskoi kibernetiki 



Eqs. (6.120)-(6.127) should be supplemented by expressions relating 
H A .  O y ,  ti, to p and rp. By Eqs.  (6.50), (6.107), we have 

(6.128) 

Let u s  t ry  to simplify these equations. W e  s t a r t  with Eq. (6.120).  The 
function on the right i s  a periodic function of q -  $ with period of 2x .  It  can 
be expanded in a Four i e r  s e r i e s  with coefficients which a r e  functions of p .  
Thus, w e  obtain the representation 

3) cos ; x  
l l - I  

To f i r s t  approximation, for an ordinary “bell-shaped“ dependence of 
image brightness on the distance from the center,  the right-hand side of 
Eq. (6.120) can  be writ ten in the form 

E = E,,+ C, (p)sin(q -+h  ( 6.13 0) 

where the s e r i e s  expansion of C,(p) in powers of p s t a r t s  with the t e r m  linear 
in p. For sma l l  p, Eq. (6.121) therefore takes the form 

€ ‘ ~ E o + E , p s i n ( r p -  ik), (6.131) 

where E ,  is a constant coefficient. 

and constant brightness B. 
of view), the illuminance E is equal to the brightness B multiplied by the 
image a r e a  corresponding to the transparent half of the chopper disk. 

Consider the following example. Let the s t a r  image be a disk of radius  (b 
If 2 UI < r, ( ro  is the radius of the telescopic field 

Thus 

1 E = B  {n$[l - ~ t a r c c o s ~ s i n ( c p - $ ) ]  +msin(cp-$)  1// 1 --sin2(cp-$) . 

Suppose the s t a r  image l ies  near  the center  of the field of view, so  that 
Expanding the right-hand side of Eq. (6.132) in powers of we 

(6.132) 
Po Pi 

piPo<< 1. 
obtain a n  approximate expression 

= B [  
n,;; _ .  
2 + isin (rp - - +I]. (6.133) 

This representation, a s  is readily seen, coincides with Eq. (6.131) i f  w e  

The qualitative variation of C,(p) with increasing p is on the whole shown 

E n d  put E, = 7, E ,  = ~ B P , .  

by the graph in F igu re  6.8. This  variation can be fitted with the function 

C, (p) = E,p, = const f o r  p > pl. 
c, (P) = ElP (6.134) 
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FIGIJRE 6.8. 

Adopting Eq. (6.1383) for  E and taking 1) = 0, w e  obtain without l o s s  of 
general i ty  the following equality instead of (6.122): 

u == pC,ip) s in (o t  + q ) +  j,, fl = f ( t )  + pE,,. (6.135) 

For  a multiplicative synchronous detector, taking h(L') = L', w e  wri te  
Eqs. (6.124) in  the fo rm 

(6.136) 

Eqs .  (6.1261, (6.1213) can  a l so  be simplified. Taking B = + ,  2 q,=y.  q 3 = x ,  
LJ = I ,  we  obtain 

(6.137) 

The  third equation in  (6.126) and in (6.128) drops  out. Of the three  
equations in (6.127), we are  a l s o  left with two only, which using (6.137) take 
the fo rm 

(6.138) . .  
8, - k: = Amx, ey - kq = Am,,. 

Combining Eqs .  (6.135), (6.123), (6.136), (6.125), and the four  l a s t  equali- 
t ies  in (6.137), w e  obtain the following s e t  of as t rocor rec t ion  equations: 

(6.139) 

If the O x  and 8, cor rec t ion  channels are symmetr ic ,  we have 

QI(D)=Q, (D)*  S i (D)=S, (D) .  (6.140) 
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2;v > 0.  
j v + n c o s a > 0 ,  

n [ - ~ c o s a ( v ~ - ~ ~ ) + 2 ~ ~ v o s i n a - n c o s * a ]  > 0. 

If we now take C,(p)=E,p, i.e., use  (6.131), the substitution of var iables  

(6.141) 

reduces Eqs.  (6.139) to a se t  of l inear  equations with constant coefficients. 

1 a = O , s i n o t + e , c o s w t ,  
b = O,cosmt - 0, sin ot 

Consider  for  simplicity the case  of an  unfiltered commutator  output, i.e., 

QI(D)=Qz(D)=S, (D)=S*(U)= 1 ;  (6.142) 

the resonance amplif ier  is tuned to the frequency v which i s  c lose  to the 
chopper frequency o and it  is descr ibed by the equation 

(6.143) 
(7+26T+ D1 D l ) V = u .  

Using (6.131) w e  get 

(6.144) 

O,=pcoscp, O , = - - p s i n ~ .  

p = v O ; + O ; .  

Substituting the var iables  f r o m  (6.141), we obtain 

II = pE,  (a  + /& 
( 7 r + 2 2 5 u +  D? D l ) V = u .  

I a - ob - kV cosu = A m ,  s i n o t  + Am, cos at, 
b + o a - k V s i n u =  im,cosot  - A m , s i n o t .  

( 6.145) 

We can  now proceed with stabil i ty analysis .  The  charac te r i s t ic  equation 
of the homogeneous sys tem (6.145) has  the form 

A ( P ) =  P ~ + ~ c v P ~ + ( w P + ~ ~ ) P ~ +  + 2v (to2 - nv cos a )  p + o*v (o - 2n sin u), (6.146) 

where n = q .  

Hurwitz's c r i te r ion  gives the following stabil i ty conditions: 

(6.147) 

The f i r s t  inequality is always satisfied.  The second inequality follows 
f rom the third and the fourth. 
is thus determined by the two inequalities 

The stabil i ty region of the sys tem for n > 0 

- ~ c o s a ( v 2 - o ~ ~ + 2 ~ 2 V a s i n a - n c o s ~ a >  0. (6.148) 
o - 2n sin a > 0 .  
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The stabil i ty region for  n :, 0 in the n. (( plane is shown in Figure 6.9. 
The stability limit c r o s s e s  the horizontal axis  IZ = 0 at  the point where 

For  I (  =r[ w e  get 

f l  = :(+ - d ,  

The stabil i ty region in Figure 6.9 i s  constructed assuming u2 -v- '> 0. 
F o r  negative n ,  a n  analogous stability region is evidently obtained for  

Figure 6.9 leads to the following conclusion. 

(6.150) 

r[ <. ri < 2.7. 
T o  ensu re  stable operation 

of t h e  system, the reference signal of frequency 10 should be phase shifted 
by a .  The optimum phase shift for  sma l l  

\: - i s  c lose to a =+. This  shift com- 

pensates the phase difference between t h e  
resonance fi l ter  output signal V and the 
input signal u .  The s m a l l e r  6 ,  i.e., the 
higher the Q-factor of the amplifier 
resonance circuit ,  the c lose r  a r e  the side 
branches of the stability limit to the 
horizontal axis n = 0, and the narrower 
a r e  the tolerance l imits  of the phase shift 
n .  The la t ter  is associated with the 
phase-frequency response of the r e so -  
nance filter: the lower the damping Z ,  the 
g r e a t e r  is the phase difference between 1' 

U -  ,. and N near  the frequency d. For 5 = O ,  
the system i s  inherently unstable. 

Physically this is associated with the 
finite passband of the f i l ter  around the 
frequency o in a closed system with the 

r 

w - 
2 

& l V 3  

z *-k&+ 
FLGC'KE 6.9. 

s t a r  image moving in :he focal plane. A s  C i s  reduced, the fi l ter  passband 
a l so  dec reases .  

n ,  and n cannot exceed 0 1 2  ( fo r  a = n / 2 ) .  Qualitatively this is quite under- 
standable. 
ove r  the chopper during the correction procedure.  The  chopping r a t e  should 
clear ly  be g r e a t e r  than the migration velocity of the s t a r  image. Otherwise, 
the correct ion sys t em cannot function. Therefore,  fo r  a given finite c o r r e c -  
tion speed, the chopping frequency o cannot be made a rb i t r a r i l y  small .  

A s  we see f rom FiLuure 6.9, the stabil i ty region rapidly t ape r s  for  l a rge  

Large n correspond to rapid displacements of the s t a r  image 
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§ 6 -5.  COMBINED ASTRO-DOPPLER CORRECTION 

6.5.1. 
and astrocorrect ion signals to gyro torquers  

System with simultaneous delivery of Doppler 

The e r r o r  equations of an autonomous inertial  system fall  into two groups 
Astrocorrect ion of differential equations which can  be solved independently. 

of the gyro elements in inertial  systems,  a s  we have seen in the preceding, 
affect only the second group of e r r o r  equations. 
change. 
f i r s t  group do not change. The gyro e r r o r s  Am,. Am,, Aniz on the right e i ther  
drop out altogether ( a f t e r  the termination of the t ransients  in the a s t r o -  
correct ion circui ts)  or take the fo rm ( 6 . 6 6 ) ,  (6 .77) .  

In the preceding chapters  we saw that a l t imeter  correct ion and the 
fundamental Doppler correction techniques conversely change only the f i r s t  
group of e r r o r  equations, and do not affect the second group. In this case,  
the effect of joint astro-Doppler correct ion (together with al t imeter  c o r r e c -  
tion) is simply the sum of the individual effects of each correct ion technique 
separately.  

However, in the particular ca se  of an inertial  system using a controlled 
stable platform (or a controlled gyroframe),  the Doppler correct ion can be 
devised so  that i t  does affect the second group of e r r o r  equations. 
c a s e  was studied in 5.6.1. 
correct ion signals are delivered to the control torquers  of the gyroplatform. 
Joint astro-Doppler correct ion therefore r equ i r e s  a special  analysis  in this 
case,  as the two groups of e r r o r  equations are no longer separated.  

measu res  the orthodromic coordinates. 
gyroplatform with the unperturbed z axis  directed along the radius-vector r ,  
i.e., along the geocentric vertical ,  and the acce le romete r s  point along the 
axes x and y of the platform lying in the horizontal plane. 
operation equations of this system without Doppler and astronomical 
correction are Eqs .  (2.23). 

the following way. 
(5.49) .  
M:, Mi, M;, r ema in  a s  before. 
e quat ions 

The f i r s t  group does not 
More precisely, the left-hand s ides  of the e r r o r  equations in the 

This  
Its  character is t ic  feature is that the Doppler 

Consider, a s  in 5.6.1, a two-accelerometer iner t ia l  system which 
This  system u s e s  a controlled 

The ideal 

The astro-Doppler correct ion signals are introduced into the system in 

The other equations in (2.23), except those fo r  the control torques 
The f i r s t  two equations in (2.23) a r e  replaced by Eqs .  

The control torques are defined by the 

A V  
a, - k2 --$) + Mk,  I 

I 
(6.151) 

Here Mk. .Mi*, are the astrocorrect ion torques.  If they a r e  zero,  
Eqs .  (6.151) for  M:, M i ,  M: reduce to Eqs.  (5.321). 
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T h e  a s t roco r rec t ion  torques are  fo rmed  using Eqs .  (6.81) where w e  may  
take fo r  s implici ty  k - ,  = 0. Then  

(6.152) 

We c a n  now wri te  the e r r o r  equations of this  sys t em.  
l‘arying Eqs. (5.40) together with the third and the fourth equations in 

(2.23), w e  obtain Eqs.  (5.322), 

(6.1 53) 

If the unperturbed platform axes  x y t  are designated x,,?:,:, , the deviation 
of the platform f rom i t s  unperturbed att i tude is descr ibed by s m a l l  angles  
CI, fi, y in accordance .xith the ma t r ix  of direction cosines  (4.22). 
variations An, , .  bn, are then given by Eqs.  (4.26), (4.27), (4.7), (4.8), (4.12). 

The  

From (6.152), (6.1.53), (4.23), we obtain 

h 1L’ 
ht, = 6 + O,.Y -az.,@ - hr,, + kz e - k%,. 1 

(6.154) 

For k = 0 these equations reduce to Eqs.  (5.323). bl\’,> and bib’,,, on the 
right in Eqs.  (6.154), as i n  (5.323), are given by (5.58). 

Eqs.  (5.58) contain the variations b v ,  and ky,. By the third and the fourth 
equations in  (2.23), we have 

( 6.1 55) 

(6.1 56) 

(6.1 57) 
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To complete the derivation of the f i rs t  group of e r r o r  equations, it only 
remains to insert  (6.157), (6.158) in (6.153). 
we should insert  their expressions from (4.26), (4.27), (4.5 

tions. 
(5.327) and then Eqs. (5.329).  
t e rms  of a ,  p, y ,  Oxo,  BY,, a,, from (4.39), w e  write for (5.329) 

For 6nxu. 6ny, in  these equations 

Let us now proceed with a derivation of the second group of e r r o r  equa- 
Varying the fifth and the sixth equations in (2.23), we obtain Eqs. 

Inserting for a*, p2. y2 their  expressions in 

(6.159) 

These equations, together with (6.157), comprise the second group of 

Further  investigation of the e r r o r  equations of this system is carr ied out 
e r r o r  equations. 

assuming small  angular velocity components oxo. w,,. ol, of the axes xoyo.zo. 
For simplicity we further take p =  r = const and z =- 0. 
t e rms  with oxo. ox, a*,, uxo, uY,. ur, and their  derivatives, we obtain f rom(6 .153)  

Then dropping the 

(6.160) 

where, by (4.26), 

anxe = - air$ f Anxo. bn, = &ra + An,,. (6.161) 
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The same simplifications reduce Eqs.  (6.157) for br,. &+,. baz, to the form 

Similarly, Eqs. (6.156) a r e  replaced by the simpler expressions 

(6.162) 

Finally, instead of Eqs. (6.159) we obtain 

1 
. .  

f l . r , f U = b o k , ,  4, + b = & J l y . ,  

6, c;,=ao,,. 

(6.1 63) 

(6.164) 

The e r r o r  equations can now be written in a fairly simple form. Thus, 
substituting in Eqs. (6.1 60)-( 6.1 63) 

hx = rp, 6p = - ru ( 6.1 65) 

and seeing that r = const, we obtain 

( 6.1 66) 

Eqs. (6.166) a r e  the f i r s t  group of e r r o r  equations of our  system. The 
second group is obtained fro,m (6.164), (6.162), (6.165): 

(6.167) 

The total position e r r o r s  a r e  written, a s  for an autonomous system, in 
the form 

( 6.1 68) 1 6x2 = bx 3. rBv0. 
by2=by-  rez, .  

F o r  k = 0 Eqs.  (6.166)-(6.168) a r e  readily seen to be.equivalent to Eqs. 
(5.335), (5.337), (5.340). 
To establish the equivaience of Eqs. (5.337), (5.340) and Eqs.  (6.167), (6.168), 

Indeed, f o r k  = O  Eqs. (6.166) go into Eqs. (5.335). 
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we make the substitution of var iables  

(6.1 69) 

Consider the differential equations (6.166), (6.167). The f i r s t  equation in 
(6.166) and the second in (6.167) constitute a third-order  system of differen- 
t ial  equations: 

(6.170) 

A s imi l a r  system is formed by the second equation in (6.166) and the 

The character is t ic  equation of each of these two sys t ems  is 
f i r s t  in (6.167). 

P' + ( k ,  3- k )  P2 f [ai( 1 + k2) + k,k]  p + kai = 0. (6.171) 

The coefficients in this equation a r e  such that an appropri-ate choice of 
k .  k , .  k ,  ensu res  any required value of the roots.  
Doppler correct ion routine thus can  always be guaranteed. 
oscil lations in the sys t em are damped. 

The stabil i ty of the a s t ro -  
The f r e e  

Note, however, that fo r  k + m  Eq. (6.171)  can  be factored: 

I p + k = 0 ,  
p 2  + k , p  +$= 0 .  

(6.172) 

In other words, fo r  sufficiently effective astrocorrect ion,  i.e., for l a rge  k ,  
the natural  frequencies of the iner t ia l  system do not change, while their  
change is clear ly  one of the main a i m s  of Doppler correct ion.  

coefficients k ,  k , ,  k,, the steady-state e r r o r s  in a system with constant 
instrumental  e r r o r s  a r e  given by  

If the stabil i ty of the sys t em is ensured by a n  appropriate choice of the 

(6.173) 

Therefore,  i n  accordance with Eqs. (6.168), the steady-state total  
position e r r o r s  6x2, 6y2 are given by 

(6.174) 1 6x2 = (Anxa f k l  AVDX.) + (kz AVDX9 - r Ao,,). 4i 
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It is interest ing to compare  the steady-state e r r o r s  in combined a s t r o -  
Doppler correct ion w:.th those in sys t ems  with two separable  groups of 
e r r o r  equations. 

Let the Doppler co r rec t ion  be introduced in accordance x.rith Eqs.  (5.196) 
o r ,  equivalently, Eqs.  (5.217). 

iVithout as t rocorrect ions,  the simplifications used in the derivation of 
(6.166) give Eqs.  (5.311), (5.312) for  the first group of e r r o r  equations. 
Replacing Am,,, Amy, with - Amr,, -AI.) ,  , w e  obtain 

(6.175) 

t& = - so, , b> = - h)), . 6 ,  = - Amz*. (6.176) 

The total  position e r r o r s  are calculated f rom (6.168). 
If now as t roco r rec t ion  is introduced, forming the correct ing torques by 

Eqs. (6.152), the seccnd group of e r r o r  equations take the fo rm 

(6.177) 

Eqs.  (6.175) a l so  change. As we have s e e n  in 6.3.2, & I , ,  Iw,, are 
replaced with 

A@;,, = SO,“ + M,,. h;. = hv. + key,. (6.178) 

which in o u r  par t icular  c a s e  follows direct ly  f rom a comparison of Eqs .  
(6.176) and (6.177). 

F o r  a sys t em with astro-Doppler correct ion based on Eqs .  (5.196), 
(6.152), the simplified sys t em of e r r o r  equations is 
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( 6.1 80) 

(6.181) 

(6.182) 
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6.5.2. One-star correct ion 

In the previous sect ions we established that the time-proportional e r r o r s  
associated with the gy ro  drift  can be eliminated with the aid of simultaneous 
or al ternate  two-star as t rocorrect ion.  Astro-Doppler correct ion also 
r equ i r e s  two s t a r s ,  if the effect of the gyro e r r o r s  is to be completely 
compensated. Howev-r, in s o m e  c a s e s  i t  suffices to reduce the effect of 
instrumental  e r r o r s  t.2 a cer ta in  preset  level, which i s  determined by the 
overal l  operating precision of the inertial  system. 
correct ion routines using a single s t a r  may prove to be quite adequate (a t  
least for  constant instrumental  e r r o r s ) .  

consider one point which has  been raised in the preceding. In a two- 
acce le romete r  autono'mous inertial  sys t em (with the acce le romete r s  lying 
in the horizontal plane along the axes  x and y of the platform, whose 
unperturbed z axis  points in the direction of t )  and in sys t ems  withDoppler 
correct ion,  the (constant) gyro e r r o r s  do not produce a growing deviation of 
the platform z axis  f rom the ver t ical  ( the direction of the radius-vector t). 
These  deviations r ema in  bounded. Only the azimuthal orientation e r r o r  
grows with time, i.e., the deviation of the axes  x and 4' f rom the unper- 
turbed orientation in the horizontal  plane. The platform thus only dr i f ts  
about the z axis .  Indeed, the platform orientation e r r o r s  t l I r , .  e l$ , .  OL1. are 
given by 

In this case,  a s t ro -  

Before proceeding with a discussion of these possibilities, w e  should 

(6.183) 

Without as t rocorrect ion,  the angle HL,, thus always inc reases  with time, 

(6.184) 

s ince 

0, = - 11,); t .  

whereas  the solutions 6x. by of the f i r s t  group of e r r o r  equations are bounded 
fo r  constant instrumental  e r r o r s ,  so that O I r , ,  HI,, are a l so  bounded. 

In sys t ems  with Do,3pler correction, the steady-state values of the angles 

t j I r ,  u , ~ ,  associated with constant e r r o r s  .i~,, Ai+, contain a factor  ___ 1 + k; . This  

is  c l e a r  f r o m  Eqs.  (5.311)-(5.314) and (5.335). If a sufficiently large k2 i s  
chosen, the steady-state angles HI, can be made a s  sma l l  as desired.  
The  ax i s  z of the inerrial  platform will then r ema in  caged to the ver t ical  
with high precision. 

growing components which depend on Aw.~:,  h,,. 

torques in accordance with Eqs.  (5.321), the drift  components for  a given 
duration of system operation can be made acceptably sma l l  by a n  appropriate 
choice of k,. This  follows f rom Eqs.  (5.350). Thus, if the only instrumental  
e r r o r s  are gyro e r r o r s ,  the Doppler correct ion is unable to deal with one 
se r ious  e r r o r  only, the azimuthal e r r o r  Oz, of the platform orientation. This  
e r r o r  i s  descr ibed by Eq. (6.184) and it obviously can be eliminated by using 
one-star  as t rocorrect ion.  

1 

The  total position e r r o r s  in sys t ems  without as t rocorrect ion contain 

However, if the Doppler signals are incorporated in the platform control 
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Strictly speaking, the preceding argument is applicable only in the 
absence of any other instrumental  e r r o r s  apa r t  f r o m  gyro e r r o r s ,  o r  when 
the other e r r o r s  a r e  s m a l l  compared to the l a t t e r .  Thus,  we see f rom 
(5.350), (5.352) that the effect of Doppler e r r o r s  grows in  proportion to 
t ime.  Two-star  as t ronomical  co r rec t ion  eliminates these e r r o r s ,  as is 
evident f r o m  Eqs. (6.174) for  the total  position e r r o r s .  

Fu r the r  note that the fai r ly  exact ve r t i ca l  in  s y s t e m s  with Doppler 
correct ion (the angles Blxo and €Ily, being small) i n  pract ice  suggests  the 
following autocorrection routine.  It suffices to m e a s u r e  the angles between 
the z axis  (the ver t ical)  and the axes  of the two tracking te lescooes and then u 

calculate the cu r ren t  position f rom equations of the f o r m  (6.38).' Th i s  
correct ion,  however, again r equ i r e s  two s t a r s .  
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Chapter 7 

DYrVA.\ITCS OF INERTIAL  SYSTE.1.IS K'ITH 
R A  L\'DO.\I INS TR 17IEXTI-1 L ERRORS 

S7.1. FUNDAhTENTAL RELATIONS OF THE 
CORRELATION THEORY OF RANDOkI PROCESSES 

The instrumental  e r r o r s  in inertial  sys t ems  and correct ion devices can  
be random, a s  well a s  determinate,  functions of t ime. In this c a s e  the 
e r r o r s  in the navigatic.n pa rame te r s  a lso contain random components, and 
the e r r o r  equations of inertial  sys t ems  can be analyzed by the methods of 
t h e  theory of random Frocesses  and s ta t is t ical  dynamics. In what follows 
we give (bvithout proof) the fundamental relations of this theory." We will 
only consider the corr,-lation theory of r e a l  stationary random processes  
(and p rocesses  with stationary coupling). 

r e a l  functions x ( r )  with cer ta in  s ta t is t ical  properties.  A random process  
.Y ( t i  is completely defi2ed by the corresponding probability density distribu- 
tion functions f t ,  f2. . . . 
x2. r2,  . . ,. x k .  r,iof a random process  X ( t i  i s  defined a s  the joint probability that 
the function .Y t t )  at  the t ime t i  takes a value xi < X ( t , ) <  xt f d x , ,  a t  the t ime 
t? a value . ~ , < X c t ~ ) < x , ~ d x ? ,  . . . and at  the time t ,  a value x,<.Yi t , i< 
< x,+dx,.  
t h e  ent i re  set of probability densit ies f,. fi. ..., j k ,  since"* 

A r e a l  random func:ion or random process  X i t )  is described by a set of 

The k -th o rde r  distribution function f a  ( x I .  t i .  

If the k -th o r d e r  probability density is known, w e  in fact have 

L, = j fad+ (7.1) 
-a 

Two fundamental concepts of the correlat ion theory a r e  the e x p e c t a - 
t i o n  v a l u e  and the c o r r e l a t i o n  f u n c t i o n  of a random process .  The 
expectation value and t?e correlat ion function, a s  we shal l  see, a r e  only 
functions of the first and second o rde r  probability densities, i.e., they 
contain much l e s s  information on the random process  than the complete 
system of probability density functions. In most applied problems, however, 
these two cha rac t e r i s t i c s  a r e  quite adequate. 

* .A. detailed and comprehensive treatment of 111 the relevant topics c a n  be found in P u g a c  h e  v .  V.S. 
' ieoriya rluchalnykh funktsii i ,?e primenenie k zadacbam anomaticheskogo upravleniya (Theory of 
Random Fmctions and Its Applsa t ion  to Automatic Control). - Gostekhizdat. 1937. 

** Hcre and in  what follows the improper integrals a re  taken in the sense of the Cauchy principal value. 
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The expectation value M [ X ( t ) ] = m , ( t )  of a random function X ( t )  is defined 
a s  

w 

(7.2) mx (0 = x f ,  ( x .  t )  dx. 
--u) 

and the correlation function K, i s  defined by the relation 

K , ( t .  t ’ ) = M  ( [ X ( t ) - m m , ( t ) l [ X ( t ’ ) - m m , ( t ’ ) j ]  = 

= f f lx - -mx ( f ) l  Ix’ - m, (t’)l fz ( x ,  x ’ ,  t ,  t’) d x  dx‘. ( 7 . 3 )  
-u) -4 

The dispersion D,  of a random function X ( t )  is equal to the value of the 
correlation function at t ’= t ,  i.e., 

ox K x  (tv t )  = M [ X ( t )  - m, (t)J’. (7.4) 

The dispersion 0, of a random function X ( t )  is thus the mathematical  
expectation of the squa re  of the deviation of the random function f rom i t s  
expectation value. 
f rom i t s  expectation value is therefore equal to \-. 

processes  X ( t )  and Y ( t ) ,  w e  also define the cross-correlat ion function 

The root mean squa re  deviation x(t)  of the function X ( t ,  

Apart f rom the correlat ion functions K,(t, t’), K , ( f ,  t’) of the random 

K,, ( t *  t’) = M IlX (0 - m, ( t ) ]  IV (t’) - m y  (t’)l). (7.5) 

If K , , ( t .  t’)= 0, the random functions X ( t )  and Y ( t )  a r e  said to be uncorrelated.  
For r e a l  random functions 

K x y  ( t ,  t‘) = K y x  (f’, t). (7.6) 

If 

z ( t )  = x ( t )  + Y ( t ) .  (7.7) 

we have from ( 7 . 3 ) ,  (7.5), (7.6) 

K,(t. t’)=K,(t, t ’ ) + K , ( f .  t’)+K,,(t, t’)+K,,(t’, t ) ,  (7.8) 

Hence i t  follows that the dispersion of the s u m  of uncorrelated random 
functions X ( t )  and Y ( t )  is equal to the sum of the dispersions of these 
” . .  runctions. 

If 
d“X ( t )  

dt“ Y ( t ) = -  (7.9) 

the correlat ion function of the random process  Y ( t )  is 

Similarly, i f  

(7.10) 

(7.11) 
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the cross-correlat ion function of the random processes  I ’ t t )  and Z i t )  is 

If a random process  is given by 

~ ‘ 1 1 )  = A j t t ) ,  (7.13) 

where A i s  a random variable which i s  not a function of t ime and f l r r  i s  a 
determinate function of time, we have 

Similarly for  two random processes  

the cross-correlat ion function is 

where .H[ .4EI  i s  the cross-correlat ion moment of the random variables .4 
and B.  

coupled random processes .  
dent of the choice of the z e r o  point on the t ime scale .  
correlat ion and cross-correlat ion functions depend only on the difference 
t - I  of the arguments  1 and t ’ :  

In what follows w e  will mainly deal with stationary and stationarily 
The i r  probability density functions a r e  indepen- 

Correspondingly, the 

1:, = k,r ( T L  k r y  = k+Y is). T = t - t t .  (7.17) 

In this c a s e  evidently 

D, = R ,  (0). (7.18) 

F r o m  the definition of the correlat ion function k , i r )  and the c r o s s -  
correlat ion functions k , r , ( ~ ) ,  k y , ( T )  we have the following properties:  

N o t e  that i f  

d”X ( t )  
Z(1)  = 7. 

kz(c)=(-1y s&l, 
w e  have f rom (7.10) 

2“ 

dr’” 

(7.20) 

(7.21) 

whence it follows that all the derivatives of a stationary random function ( i f  
they exist)  a r e  a l so  stationary random functions. The inverse  proposition, 

31 I 



I Cti. 7.  RANDOhl INSTRUhlENTAL ERFUHS 

Integration of a stationary random function may give however, is not t rue.  
a nonstationary function. 

correlat ion function, is the spectral  density S,(ie), which is defined a s  the 
Four i e r  t ransform of the correlat ion function &,(T): 

Another character is t ic  of a stationary random process,  besides i t s  

(7.22) I s,(O)=x k , ( T ) e - / o r d T .  
-,.. 

The correlation function in i t s  turn is expressed in t e r m s  of the spec t r a l  
density by the integral  

Y l  

k, (7) = 1 S ,  (0) do, ( 7  2 3 )  
-w 

i .e. ,  the correlat ion function is the Four i e r  t ransform of the spec t r a l  
density. 

By (7.23) 
00 

D, = k,v (0) = 1 s, (0) do. (7.24) 

Since k ( ~ )  is an even function, Eq. (7.22) suggests that S,(w) i s  a lso an 

F r o m  (7.8) and (7.22) i t  follows that the spectral  density of two uncor- 

-uD 

even function. 

re la ted stationary random functions is equal to the sum of their  spec t r a l  
densit ies.  

representable over  the interval - T < t < T by the expansion 
From the theory of stationary random functions, any such function X ( t )  is 

(7.25) 

Here  a, are uncorrelated random variables of zero mathematical  expectation, 
and 

w --. nl (7.26) 
1 -  2r 

The dispersions D, of the random variables a, are equal to the Four i e r  
expansion coefficients of the correlat ion function k , ( r )  over  the interval 
- 2T < T < 2T: 

Thus, 

(7.27) 

(7.28) 
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Taking the limit T ~ ^ R  in ( 7 . 2 7 )  we obtain ( 7 . 2 3 ) .  Taking the limit 
T + m  in ( 7 . 2 5 )  we obtain an integral representation of the stationary random 
function X ( t ) :  

.Y i t i  = m, (t i  + f Q  (0) el"' do. ( 7 . 2 9 )  
-a 

where - 
QtNt = - L7.T ' . [ X ( t ) e , ' " ' d t *  ( 7 . 3 0 )  

so  that i ts  correlation function i s  expressed by 

KoW. O')=S,(o1~~o-o'). ( 7 . 3 1 )  

where & i o -  o'i is Dirac's  delta function.* 
Consider the following problem. 

the random functions X t t )  and Y ( t )  be 
Let the differential equation between 

P ( D )  Y = e ( D )  X .  ( 7  -32)  

where P i D )  and e ( D )  a r e  polynomials with constant coefficients in the 

differentiation operator D = $ .  

the expectation value of X ( t )  and i ts  correlation function k , t ~ i  or spectral  
density S, io)  be known. Let further the initial conditions of ) ' ( t i  be some 
given random variables. We seek the expectation value and the dispersion 
of the random function v(t),which solves Eq. (7.32).  

initial conditions i s  clearly obtained by the same methods a s  the solution for 
determinate initial conditions. It i s  given by the sum of some functions of 
time with random coefficients, which depend on the random initial conditions. 
If the expectation values, the dispersions, and the cross-correlation moments 
of the initial conditions a r e  given, the expectation value and the dispersion 
of the solution of the t.omogeneous equation (7 .32)  can be found without 
difficulty. If the stability conditions a r e  satisfied, i.e., if the roots aL of the 
characterist ic equation P(a)=O have negative r ea l  parts, the expectation 
value and the dispersion of the homogeneous equation (7 .32)  clearly go to 
zero with time. 

Let us consider the solution of the inhomogeneous equation (7 .32)  with 
zero  initial conditions. 
of ( 7 . 3 2 )  and seeing that it commutates with the differentiation operation, w e  
obtain the following equation between the expectation values m I ( t )  and m,( t ) :  

Let the function X c t j  be stationary and let 

The solution of the homogeneous ( X ( f ) - O )  equation (7 .32)  for random 

Applying the expectation operation to the two sides 

P ( D f m ,  ( t )  = e ( D )  m, (t) .  ( 7 . 3 3 )  

This equation i s  clearly solved by the usual techniques. 

neous equation ( 7 . 3 2 ) .  
It now remains to  find the dispersion D, of the solution of the inhomoge- 

On the right w e  clearly can substitute for the function 

* Generally it is assumed that the correlation function may have discontinuities of the first kind and may 
incorporate delta functions. 
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X ( t )  the centered random process  

X " ( t )  = x ( t )  - mr ( t )  (7.34) 

with z e r o  expectation value. 
Y'(t). 
value). 

The  corresponding value of Y ( t )  is designated 
Th i s  is evidently a l s o  a centered random process  (of z e r o  expectation 

Eq.  (7.32) is thus replaced by the equation 

I 
P ( D ) Y O ( t ) = e ( D ) X o ( t ) .  (7.35) 

Let g ( t )  be the solution of Eq. (7.35) with the unit s t e p  function 6 ( t )  
substituted fo r  X'J ( t )  o n  the right.  
or a unit s t ep  response.  

be writ ten in the f o r m  

g ( t )  is general ly  called a weight function 

I 
The solution of Eq. (7.35) with z e r o  init ial  conditions can  thus formally 

1 

yo(t') = 1 &!' (t - 7) x0(T) dT. (7.36) 
10 

F r o m  this  equality and the definitions of correlat ion function (7.3) and 
dispers ion (7.4) we get 

i 
t t' 

K, (t. t') = g (t - T) g (t' - T') k, (7, T') d~ d?', 
10 1. 

D, ( t )  = K, ( t ,  t ) .  

The dispers ion D,( t )  of a random function Y o ( t )  when the function X O ( t )  is 
s ta t ionary can also be found by a different method. 
s ta t ionary function X ' ( t )  c a n  be r ep resen ted  by the expansion 

F r o m  (7.25), the 

(7.38) 0, 

XO(t)= 2 alejolt.  
I - -  D) 

For each elementary t e r m  on the right in Eq. (7.38) we  can  find a solution 
y , ( t ,W,)  of Eq. (7.35). F r o m  (7.36) we have 

I 

Y , ( t ,  W[)= 1 g ( t  - T ) t ? ' V d T .  (7.39) 

Now 
6 3  

YO(0 = r, "LY, ( f s  W l ) ,  
I - - -  

and s ince the random variables  al are uncorrelated we  get 

(7.37) 

(7.40) 
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Taking the l imit  T - + x  in E q s .  /7.28),  (7.39),  (7.42) and us ing  Eqs . (7 .27 ) ,  
f7,22),  (7.23),  we obtain for the d i spe r s ion  

( 7 . 4 3 )  

( 7 . 4 4 )  

Eqs. (7 .37) ,  (7 .42 ) ,  (7.43) give the  d i spe r s ion  of the  r andom p r o c e s s  Y o ( t ) ,  
and hence  of the p r o c e s s  Y ( t )  as a function of t ime.  If the s tab i l i ty  condi- 
t ions are  sa t i s f ied ,  w e  c a n  find the d i spe r s ion  D, f r o m  the damping  of the 
t r ans i en t s  (when the r sndom p r o c e s s  Y n ( t i  becomes  s ta t ionary ,  a s suming  a 
s t a t iona ry  .\i'"iti hy tak in?  I ) ,  ( r = : ~ ) .  Then c l e a r l y  

1 y: 1 r ,  w1 1 1 = I U)(~CO; \ ). (7.45) 

; shere  ' I l f I v ) , ~  s t ands  f o r  the  t r a n s f e r  function 

E q .  ( 7 . 4 2 )  is nou  r ep laced  by the s e r i e s  

(7.46) 

(7 .47)  

and (7.43) by the in tegra l  

i 

L ) , (  . - ) =  i ~ ~ l l , ~ l ~ ~ l , , . ~ l ~ ~ ~ , ~ .  (7.48) 
--I; 

iC'e have  cons ide red  the  c a s e  of one r andom function on the right in  

If the  right-hand sislte of E q .  ( 7 . 3 5 )  conta ins  s e v e r a l  r andom functions 
Eq. 17.35/. 

X L t t ) ,  i.e., if the right-hand s i d e  i s  r e p r e s e n t a b l e  as a s u m  

-f 

Fltl= e,lnl'Y,lt,. (7.49) 
0 - L  

t he  above  me thods  can  be  applied to de t e rmine  the d i s p e r s i o n s  D , , ( t )  c o r r e -  
sponding to e a c h  randorn function .Y,irj. If no two random functions ,Y, It) are 
co r re l a t ed ,  the d i s p e r s i o n  I ) ,  ( t i co r re spond ing  to  the s u m  on the r igh t  in (7 .49)  
is s imply  the s u m  of the d i spe r s ions  D,tctr. If, however,  the r andom func- 
t ions ,YL, t1  are  co r re l a t ed ,  the d i spe r s ion  c a n  be  ca lcu la ted  f r o m  re l a t ions  
lvhich follow f r o m  E q s .  (7.4), (7 .8) .  In th i s  c a s e  we r e q u i r e  the  cross- 
c o r r e l a t i o n  functions b:vE,,ir. t ' ) .  Clea r ly ,  if the solution y 6 i t i  of Eq .  ( 7 . 3 5 )  
with the s u m  (7.49) on  the  right c o r r e s p o n d s  to unit s t e p  r e s p o n s e  g , ~ t ) ,  and 
the solution y ; i r i  to the unit s t e p  r e s p o n s e  g,ct,, we  have  

( I  

( 7 . 5 0 )  . .  
K , ,  I f .  l ' ) =  I 1 g , c f - T l g , ( f ' - T ' ) K r x  ( T ,  T ' J d T d r ' .  . .  .I 

I !  
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where K x r  (T, r‘) is the cross-correlation function of the random processes 
X , ( t )  and X , ( t )  which enter (7.49). 

initial conditions, the dispersion of the solution of Eq. (7.35) with nonzero 
initial conditions is obtained by taking the sum of the dispersion D,(t) above 
with the dispersion of the solution of the corresponding homogeneous 
equation. If, however, there is correlation between the random initial 
conditions and the random functions on the right, this correlation clearly 
must be allowed for in the calculation of the total dispersion. 

‘ I  

Now, i f  the right-hand side of Eq. (7.35) is not correlatedwiththerandom 

Note that if several  differential equations of the type (7.35) a r e  given, 

J” ( D )  Y ,  ( t )  = e, ( D )  X ,  (0. (7.51) 

and their  right-hand sides a r e  correlated, the dispersion of the random 
function 

should be calculated allowing for  the fact that the functions Y , ( t )  a r e  also 
correlated. 
(7.8), and the cross-correlation functions KYIYj ( t ,  t’) a r e  found from relations 
analogous to (7.50). 

Any problem of random motions, in particular the analysis of any linear 
dynamic system reduces to the solution of equations of the form (7.35). The 
above relations give the expectation value and the dispersion if the statistical 
characterist ics of the random disturbances and the initial conditions a r e  
known. 

We have so  far  assumed that the expectation values, the dispersions, and 
the correlation moments of the random initial conditions a r e  known. 
expectation values and the correlation functions (o r  spectral  densities) of the 
random functions on the right in Eq. (7.35) were also assumed to be given, 
as well as the cross-correlation functions of these random Drocesses 

The calculation is carr ied out using expressions of the form 

The 

statistical characterist ics in every particular problem should be either 
evident from a priori  considerations o r  determined in special tests.  

Experimental determination of the expectation values and correlation and 
cross-correlation functions is a fairly complex undertaking. 
solved unless the relevant random processes a r e  treated as ergodic. In the 
ergodicity hypothesis i s  satisfied, one realization x ( t )  of the random process 
X i t )  in a sufficiently large time interval 0 < t < T is all  that is required for 
the determination of the expectation value and the correlation function. Then 

It cannot be 

0 

K, (r) * $ J [w (t + 7 )  - m,] ~ x ( t )  - mxl d t .  

Similarly, from two simultaneous realizations w ( t ) ,  y ( t )  of the two random 
processes X ( t ) .  Y ( t)  we find their cross-correlation function. I 
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57.2. THE EFFECT OF RANDOILI INSTRUILTENTAL 
E R R O R S  ON AUTONOMOUS I N E R T I A L  S Y S T E h I S  

In connection with autonomous inertial systems we will consider two 
cases  only: the case  of a stationary object in the axes OL;,q*:, and t h e  case  
of a satellit,> in a c i rcular  orbit. These a r e  fairly typical cases:  the f i rs t  
provides an adequate approximation to slow motion, and the second is  
representative of satellite motion with small  perturbations. 
cases ,  a s  we shall  see,  provide ample information concerning the depen- 
dence of bystem e r r o r s  on random instrumental e r r o r s  when the motion 
parameters  change. 

These two 

7.2.1. The case of a stationary object 

Consider an object which is stationary in the axes Ot&rl,C,. The e r r o r  
equations of an autoncmous inertial system in this case reduce to the form 
( s e e  § 1 .2 )  

6; + wibx = 1 n x  - r &,, 
6.; .t d~ 69 = An,, + r 1hx, 
h i  - 2 q ; f k  = La*, 

H i ,  - @ - * x  
> t Y  - * O I Z  = -eBr .  

O , ,  = hr. H ,  = Am,. 0, = lm:. 
~ ‘ ~ : = b x t r O , .  h y l = & y - r @ . r t  6z2=Ai  

(7.54) 

Here k,. by2. 6r? a r e  the total position e r ro r s ,  and O l y .  a r e  the 

A s  Eqs. (7.54) a r e  symmetric with respect to the variables 6~ and h p ,  
platform orientation e r r o r s .  

we need only consider the truncated system 

(7.55) 

plus the additional equation 

6z2 - 2 4  az2 = A ~ ~ .  (7.56) 

Let u s  consider the accelerometer e r r o r s  hx, h, and the gyro e r r o r s  
hy a s  centered random stationary processes.  
uncorrelated and their spectral  densities a r e  given by 

Suppose these processes  are 

(7 .57 )  
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Finally le t  the initial conditions of Eqs. (7.55)-(7.56) be independent 
centered random variables  6x0. 6 2 ,  80 azo, azo with known dispers ions Db9, DbA, 
Do!, Dbp Dbi0. We assume  that the in?tial conditions are  uncorrelated with 
instrumental  e r r o r s .  

Let u s  find the dispers ions of the random functions 6z2, ax2 and OlY.  
We s t a r t  with Eqs. (7.56). Since 6r', 6zo. Anz a r e  independent (uncor- 

related),  the dispers ion Db2, can  be wri t ten as the s u m  

D ~ ~ ,  = D:;:+ D:: + ~ t 2 .  
The  solution of Eq. (7.56) is 

(7.58) 

6z2=6zo~ho0  f i t + &  s h o o k 5 t ,  (7.59) 
% 

and by (7.14) we have 

D!:: = Ch2 00 C t ,  DtZ = !@ sh2 oo m t  , 
(7.60) 

20; 

It now rema ins  to  calculate the dispers ion D t 2  of the solution of Eq. (7.56) 
f o r  z e r o  initial conditions. 
Eq. (7.56) is 

To this end, note that the unit s t e p  r e sponse  of 

g ( t )  = shoo v t ,  (7.61) 
0 0  fl 

and the correlat ion function KAfiz(t, t') of the random process  An,(t) in  virtue 
of Eqs. (7.23), (7.57) is 

KAn,(t. t') = D ~ n , e - a z ' f - f ' r .  (7.62) 

Therefore ,  by (7.37), we have fo r  t o =  0 

I t  
- A n  drdr'. (7.62a) 

D ? z ( t ) = r  r r s h o n 1 / ? - [ t - ~ )  s h o n f i ( t  - ~ ' ) e - ~ z ' ' " ' '  " .  id 
Integrating* in  the right-hand s ide  of Eq. (7.62a), we  find 

An2 1 D An 
( t )  = 

20; (20; - .;) [ - (- sh % pt-f) + 
40; 

+- [ 20: - u: 1 ( c h % 1 / 2 t  + 0 0  n- sh o, fit) ] + sh?% Ot). (7.63) 

It is readi ly  s e e n  that Dtz: (o)= 0, as i t  should. For small t ,  series- 
expanding the right-hand s ide  of (7" we 'obtain the following approximation: 

(7.64) t 5  D,h,";2(t) = D An2 ( T - a z T ) '  t' 

* When evaluating the integral. the domain of integration should be divided into two subintervals: 
t - 7 ' > 0  and T - 7 / 4 0 .  
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For sufficiently l a rge  I ,  when s h  w, ,1 ' ; i t~ch , . , , I ' ; i t , heU,1 -~; ,  w e  obtain 

from (7.63) the following asymptotic expression for  the dispersion: 

If a,:$w,J. we have 

(7.65) 

(7.66) 

Now consider Eqs.  (7.55). To  find the dispersions Dbx,(t) and D e L Y ( t )  w e  
c l ea r ly  r equ i r e  the correlat ion functions of the random processes  6x and By, 
a s  well as their  cross-correlat ion function. 

By analogy with (7.58),  w e  have 

K, (t ,  t') = K$ ( t ,  t') + K i m ,  (t. t'). (7.67) 

Clearly,  

The  unit s t ep  response of the second equation in (7.55) i s  unity, and the 
correlat ion function K,,ny(t, t ' i  of the random process  h y ( t i  i s  

KA.,," lt, t ' )  = D i m  "-" I. (7.69) 

Therefore  (I..= 0) w e  have from the f i r s t  equation in (7.37) 

t t  

K i n y ( t ,  t') = Dim I j e-py~r-T'fdT~T~, 
y o  0 

(7.70) 
Y 

whence 

Now, 

With t ime the second t e r m  in brackets  becomes ignorable and for 
sufficiently large t we have the asymptotic approximation 

For sma l l  t we ha*ie the approximation 

D = DAm t2+ DBo. 
BY Y Y 

(7.71) 

(7.72) 

(7.73) 

(7.74) 
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Consider the f i r s t  equation in (7.55). Since by assumption Anx and Amy 

a r e  uncorrelated random functions, we may write 

Here,  evidently, 

D z  = Dbr cos26Q. D:f = .FLL s i n 2 o d .  (7.76) 
4 

and the problem reduces to the calculation of Dt' and D ~ : Y .  

the unit step response in this case i s  
Leaving only AnK on the right in the f i r s t  equation in (7.55), we note that 

1 .  g ( t )  = - stno,#. 
0 0  

Hence and using (7.37), (7.57), (7.62) we get 

(7.77) 

Evaluating the integral  on the right, w e  find 

(7.79) 

For sma l l  t we have the approximation 

(7.80) 
t' D,"!K ( i )  = DAnx 7. 

Conversely, for  large t ,  Eq. (7.79) gives the asymptotic expression 

or approximately 
n 

if we may take 

a: >> 6);. 

(7.81) 

(7.82) 

(7.83) 

We now leave only - r A m y  on the right in the f i r s t  equation in (7.55). The 
unit s tep response to this disturbance is given by Eq. (7.77). 
time, by (7.69) and (7.21), 

At  the s a m e  

Y (7.84) 
K h G y  ( t ,  t')= D,,,, 1 2 8 y ~ ( ~ - f ? - B ~ ~ - B y 1 f - r '  '1. 
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The refore,  

Therefore  

17.85) 

(7 .86)  

(7.87) 

Se r i e s  expanding the right-hand side in powers of t ,  w e  obtain the 
approximate expression 

If Sf>>(,,:, Eq. (7.88) c a n  be simplified to the form 

A* 4 2  D,>, Y ( t )  = - 3 ' B,Dhyt ' .  

( 7 . 8 8 )  

(7.89) 

For large t ,  we obtain f r o m  (7.87) the following asymptotic expression 
for  the dispersion: 

(7.90) 

Approximately, 

(7.91) 
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If now Eqs.  (7.76),  (7.79), (7.87) a r e  inser ted in the right-hand side of 
Eq. (7.75), we obtain a n  expression for the dispers ion / b 6 , , ( f )  of the random 
function 6.r: 

F r o m  the last  equation in (7.55) we thus find for the dispers ion of O,, 

(7.93) 1 
(t) = 7 Dbx Ct). 

F o r  sma l l  t ~ for example, we obtain the following approximation: 

For large t we have asymptotically 

(7.94) 

(7.95) 

Hence it is c l ea r  that the contribution of the time-proportional t e r m s  to 
the dispers ion De,, becomes progressively m o r e  pronounced with t ime. F o r  
sufficiently l a rge  t (assuming 3 to be small compared to  a: and p i )  we thus 
have the approximate equality 

(7.96) 

To conclude the solution of ou r  problem, we s t i l l  require  the dispersion 
Dd*, of the total  e r r o r  6x2 in the coordinate x .  F r o m  the third equality in 
(7.55) and (7.8)  we have 

Therefore  

(7.98) 
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The  expressions i A r ( t )  and Dey i f )  have been determined. 
by Eq. (7.92) and the second equality in (7.72), respectively.  

They are given 
t V e  only need 

K h r ,  Ai .  

Eqs. (7.55) for  6-r and c)? contain the random functions I&:> and \my on 
r ight .  
c ros s -co r re l a t ion  function i s  

They are c l ea r ly  correlated,  and by Eqs. (7.12) and (7.69) their  
h e  

Therefore  

Integrating in the right-hand s ide in  (7.100), we find 

For s m a l l  t w e  have approximately 

F o r  l a rge  t asym3totically 

(7.101) 

(7.102) 

(7.103) 

F r o m  Eqs. (7.98), (7.101), (7.92), and (7.72) we now find the following 
expression for  the dispers ion in the e r r o r  ax.,: 

= D,,roco~2~i , t  +--i- I D,,psin?u),t + r2D 
%;, '4 

(7.104) 

(7.1 05) 
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(7.111) 

whence 

The integrand in the last term on the right in Eq. (7.110) contains the 
cross-correlation function Key. Since Amy = e,., we have 

Key. A m y  = Key, B y f  (7.113) 
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whence 

(7.116) 

(7.117) 

Finally using expression (7.112) fo r  the function K e , ( ~ .  O ) ,  w e  find 

t De,' 

J K ~ ~ ( T ,  ~)sinc.),~(t--)dT=~(~ -cosq,t).  (7.118) 
1 

b'> 

Inserting the integrals_(7.116)-(7.118) on the right in Eq. (7.110), we 
obtain a n  expression for  &,. 
expressions (7.76), (7.79) forthefunctions 0:;. D l z ,  D:2 in Eq. (7.109) brings 
u s  back to Eq. (7.104:. 

In conclusion note that w e  have used Eqs. (7.37) in calculating the disper-  
sions of the random functions ax, 6x1. 6,. e,, . 
dispersions in t e r m s  of the correlat ion function of the right-hand s ide  of the 
differential equation. 
using Eq. (7.43). These  calculations, however, involve improper  integrals 
and a r e  fairly complicated. 

Substitution of this. expression together with 

These  equations expres s  the 

Similar manipulations naturally can be c a r r i e d  out 

325 



Ch. 7 .  RANOOhl INbTRUMENTAL EfiKORS 

7.2.2. The c a s e  of a satell i te in a c i r cu la r  orbit  

(7.119) 

For a satell i te in a c i r cu la r  orbit, the e r r o r  equations projected on the 
orbital  axes  have the form 

6% + 2 0 ~ 6 2  = An, - r Am,, 
6y + oi 6y = An, + r Am, - r o o  Am,. 

&-36);h2  - 2 ~ , , 6 ~ = A n , + 2 r o o A m y ;  

8, + mot), = Am,. 

e ,  = Am,. 

0 I x -  --"u r 
hx, = 6x  + r0, .  
6.2, = 62. 

8, --0,0, = Amz: 

0 -&, ~ I z s = - e z ;  
6y2 = 6y - re,, 

They a r e  obtained from the general  equations (1.95)-( 1.97) if  we take 

x = y = O ,  r = z ,  o,=o,=O. w =a0. (7.120) 

The solution of the f i r s t  three equations in (7.119) is given by (1.152). 
According to these expressions,  

6 X r ~  l j  A f l x [ -  3 0 o ( t - T ) + 4 S i n o , ( f - T ) ] d ? -  

- r  { A m y d T - -  0 0  2i An,[i - c o s % I t - ? ) [ d T +  
n 

6 i 0 + r A m !  
*, +&xO + (4sinoot - 30&+ 

2 6 2  
0 0  

+ 6 6zo(sinoot - m o t )  f-(cosoot - 1). 

(7.121) 
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T h e  solutiori of the  s y s t e m  c o m p r i s i n g  t h e  f o u r t h  a n d  s i x t h  e q u a t i o n s  i n  
7 .119)  i s  found in  the f o r m  

I -r 1 [ l t V A > l t l t , 9 u ( t  - T j ~ h , C O S U o ( f - T ~ [ d T .  

T h i s  fo1loir.s fron- Eqs. (1.179) if we  put t , b , = ~ d  = c o n s t .  The s o l u t i o n  of 
t h e  fifth equat ion  in  (7 .119 )  i s  c l e a r l y  

H, = a; +- j ~ m ,  d ~ .  ( 7 . 1 2 3 )  

In  what f o l l o k v s  w e  a s s u m e  that  t h e  e x p e c t a t i o n  v a l u e s  of t h e  r a n d o m  
i n i t i a l  c o n d i t i o n s  a n d  t h e  r a n d o m  i n s t r u m e n t a l  errors are  all z e r o .  
r a n d o m  funct ions  A n , .  \n , In:, Amx,  .\m,,. \m, are a s s u m e d  t o b e u n c o r r e l a t e d  
with o n e  a n o t h e r  and  kr-ith the  in i t ia l  condi t ions  n.~ ' ' ,  A?'. h i ' .  A.u". A i * " .  n-". d,'. e':.. 0:. 
T h e  i n i t i a l  c o n d i t i o n s  a re  u n c o r r e l a t e d  e i t h e r .  

L e t  u s  f ind the d i s p e r s i o n s  Dv,r, ne y ,  nil,, of t h e  p l a t f o r m  o r i e n t a t i o n e r r o r s  
a n d  t h e  d i s p e r s i o n s  D,7.r:, @,,?.. u:, of t h e  t o t a l  pos i t ion  errors u s i n g  t h e  known 
d i s p e r s i o n s  of t h e  in i t ia l  condi t ions  a n d  the  g i v e n  c o r r e l a t i o n  func t ions  K t , t r ,  
k'i-) K i * . ,  K t V n , .  k't,,, , X l n z  of t h e  i n s t r u m e n t a l  errors .  
t ions ,  by a n a l o g y  $.ith Eqs. (7.62), (7 .69) ,  are t a k e n  i n  t h e  form 

T h e  

T h e  c o r r e l a t i o n  func-  

(7.124) 

By the seventh ,  e ighth ,  a n d  ninth e q u a t i u n s  in (7.119), w e  h a v e  

I % ,  7 1 D6y. De, = 7 1 Lh rr De, I = f iez .  (7 .125)  

From Eq. (7.121)  f o r  6x w e  see tha t  t h e  d i s p e r s i o n  Dbr may b e  w r i t t e n  as 
t h e  sum 

w h e r e  

(7.127) 
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(7.128) 

(7.130) 
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Inser t ing  t h e s e  e x s r e s s i o n s  for the in t eg ra l s  i n  (7.129) and  co l lec t ing  
l ike t e r m s ,  we  obtain 

+ I I K A ~ , (  T. T') COS 0, (t  - T) COS 0, ( t  - T') dT dT'. (7.132) 
J U  

But 

The re fo re ,  using l.he f i r s t  equation in  (7.72), w e  obtain ins tead  of the  
second  r e l a t ion  in (7.128) 

(7.134) 
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Finally,  aga in  us ing  the first equation i n  (7.72), we obtain f r o m  the  th i rd  
equality in (7.128) 

(7.135) 

E q s .  (7.126), (7.127), (7.131),  (7.134), (7.135) toge ther  with the second 
equation in  (7.125) give the  d i spe r s ion  De,, of the angle  ely a t  any t i m e .  
pa r t i cu la r ,  f o r  s m a l l  t ,  we have  the approximat ion  

In 

1 De,, = -p- (Db,O f Db;ot2+ D6,00if3 + 
+ Dbiooft4+d D4" r t4 + r)  Anz oit6 ) +* 3 p y D A n y f 3 '  (7.136) 

A s  t i n c r e a s e s ,  the  t e r m s  with e-at and e-pr i n  E q s .  (7.131),  (7.134), 
(7.135) f o r  D t x ! ~ ,  D:xnz, D:rm~ r ap id ly  d e c r e a s e  (a t  l ea s t  when u, p>>o,) and  
c e a s e  to  a f fec t  the  d i spe r s ion  F o r  sufficiently large t ,  De,, is thus  
de t e rmined  by the  f i r s t  t e r m  on the r igh t  in  (7.131), s i n c e  in  th i s  c a s e  we 
have approximate ly  

l2 I 1 6  
Dely=  7 [a, DA,+t3+ 9 (Db;o+ 4D6,00:)t2+ .'o., DAizzt + 9D4myt2.  (7.137) 

We will  now find the d i spe r s ion  D B l x ( t ) .  A s  we see f r o m  the  f i r s t  equation 
in  (7.125), th i s  r e q u i r e s  knowledge of D b y ( t ) .  
(7.121), we m a y  w r i t e  

By the second equation i n  

D,, = D$ + + D::Y + Db";".+ D t P ,  (7.138) 

where  

(7.139) 

(7.140) 
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S i m i l a r l y  f r o m  th?  t h i r d  equat ion  i n  (7 .140) ,  u s i n g  t h e  s e c o n d  eqi ia l i ty  i n  
17.133), x e  f ind 

E q s .  (7 .138) ,  ( 7 . 1 C 9 ) ,  (7 .141) ,  (7 .142)  t o g e t h e r  with t h e  s e c o n d  equat ion  i n  
(7.125) g i v e  the d i s p e r s i o n  of t h e  a n g l e  Hi,. For  s m a l l  t we h a v e  t h e  
a p p r o x i m a t i o n  

For f a i r l y  l a r g e  t t h e  d i s p e r s i o n  is d e t e r m i n e d  by t h e  t i m e - p r o p o r t i o n a l  
t e r m s  o n  t h e  r i g h t  i n  E q s .  (7 .141) ,  (7.1421, so  that  a p p r o x i m a t e l y  (L(>>C.),,, 

8 >> 
I ' ) t .  (7.144) 

P* 6, 
1 

%I.. = (w * A n y  + - D% + - Dim, 

It now r e m a i n s  t o  f ind t h e  d i s p e r s i o n  DO,>. By t h e  l a s t  e q u a t i o n  i n  (7.125) 
and  the  s e c o n d  e q u a t i o n  in (7.122)  

D = DZ; - D$ + 0,'". f Di17, 
W I  I I* I I  II  

w h e r e  t h e  f i r s t  two t e r m s  are 

(7.145) 

eo 
( 7 .  I 46) 

9'' 

a l l  I 

and the l a s t  t w o  terms are e x p r e s s e d  in  i n t e g r a l  form 

D .r = D ~ ,  s in20ut .  D ~ '  = D ~ , )  CCS? Out. 
11  2 

(7.147) 
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Using (7.79) and (7.133) we find 

+*[I - ($s inw, t+coswd 

1 

[ ( ~ , c o s o ~ ~ - - ~ s i n o , t ) e - ’ ~ ‘ - ~ ~ ]  +-sin2wot . I 26, I e: + m i  

From (7.145), (7.146), (7.148) we see that fo r  small t 

DAm)t2+$ D Am.? P. 

and for l a rge  t w e  approximately have 

(7.148) 

(7.149) 

( 7 . 1 5 0) 

(7.1 5 2 )  

\Ve‘have so  far dealt with the dispers ions Du,,, De,* of the random 
We can  now proceed to calculate  the orirntation e r r o r s  of the platform. 

dispers ions I J ~ . ~ : .  I )h , , - ,  /YcjZ: of the total  position e r r o r s  bx2. by,. tu2. 

the las t  relation in (7.121) gives 
1Ve s t a r t  with &:. By the las t  equality i n  (7.119), 6 z 2 = b z ,  and therefore  

L),z, = D:: + L$:: + + 0:’ + D:? + D*”Y. (7.151) 
1 622 

H e r e  evidently 

n;:: = - Dbi0 (1 - cos q , t ) 2 .  

r g 0  = L ., I ) h ; ~  sinzco,,t, 

,*>; 
Db’o 

b 2 ,  
= uaI0 (4 - 3 cos wOt )’, 

“’3 

f),,,t ( I  -ccosW”t)2.  
= 

a:> w; y , 

and the other  two t e r m s  a re  given in integral  f o r m  

4 ’  = -i J‘ KA,r,r (T. T‘) [ I - COS 0” (f - T)] [ 1 - COS W o ( f  - T’)] dT dT’.  

. (7.153) w 3 ”  u 

*3 u 0 

Ds”;:. -4 / / K A C z ( T ,  T ’ ) S l l l W o ( f - T )  s i n o , ( t - T ‘ ) d T d T ’ .  

The  integrals  on the r ight  i n  (7.153) are not new. The  f i r s t  differs  f r o m  
the integral  in  the second equality i n  (7.128) only in that h a s  been 
replaced with K A n x ,  a point of no consequence f o r  the evaluation of this 
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There fo re ,  by analogy with (7.134), w e  find 

( 7 ,154) 

T h e  second in tegra l  in (7.153) is evaluated by compar i son  with Eqs. (7.78),  
17.79). LVe find 

(7.1 55) 

F r o m  Eqs. (7 . l51 \ ,  (7.152), (7.154), (7.155), expanding the  re levant  Dbx, 
functions in T a y l o r  s e r i e s  and re ta in ing  only the first nonzero  t e r m s ,  we 
obtain f o r  s m a l l  t :  

For l a r g e  t w e  ai)proximately have (a:>>@$ 

(7.157) 

Let u s  now ca lcu la te  Ob:, DO",. 
find the c ros s -co r re l a t ion  functions Kh.e , ( t ,  f'), Kby ,e ,  (t ,  t'). 
to the cor responding  equal i t ies  a t  the end of (7.119), we wr i t e  

Using the solutions (7.121), (7.122), we 
Then, accord ing  

(7.1 58) 

The  d i spe r s ions  136.r and Day on the  right have been calculated before, as 
well as the dispersiori  De, .  
lated anew, together with the c ros s -co r re l a t ion  functions Kox,ey and K b y , e x .  

The  d i spe r s ion  Do.r, however, h a s  to  be calcu- 

From the f i r s t  eq l a t ion  in (7.122) we get 

D = Do* COGW t + De* sin'oot + 
e.? z " f 

f t  

+ 1 J KAmx (T, r ' )coso~(t  -T)COS*(t  -T' )dT dT'f 
, li 

( { K A m z ( T ,  T ' ) S i n W O ( t  --)sinwi,!t--')ci5dT'. (7.159) 
-+6 f 

F r o m  the f i r s t  eq i a t ion  i n  (7.121) and Eq. (7,123) we have 
f t  I 

K&.~, e , ( t ,  t ) = - r  J J K A ~ ~ ( ~ .  T ' ) d r d T ' + ~ ( 4 s i n ~  - ~ ~ J ) J u A ~ ~ ( . T ,  ~ ) d r .  (7.160) 
( I  0 I 
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Finally,  f r o m  the  second equation in  (7.121) and the f i r s t  equation in  
(7.122), we  have 

KAmx(r. 5')  C O S  4 (f - z) cos o,(t - z') d t  dr' + 
I, <, 
I , '  

+ r J u A m ,  (7, T') sin o,(t - T) sin oo (t - T') ds d ~ '  - 

- _  sino,l J xAmx(z ,  O ) C O S O , ( L  - T ) ~ T .  

u (0 

(7.161) 

Turn ing  to the f i r s t  equation in  (7.158), we  i n s e r t  f o r  D6r i t s  exp res s ion  
f r o m  (7.72), and for  Kbx,ey(t .  t )  f r o m  (7.160). In(7.126) 

on 
0 

f r o m  (7.126), f o r  De 
the  l a s t  t e r m  is repfaced  in  acco rdance  with the l a s t  equation in (7.128). A l l  
th i s  g ives  

Dbr, == O f +  D z o  + 0,": + D:io+ 

+ + D,hnz+r2D 0 +c Am,, (4 sin mot - 3oUf)*. (7.1 62) 
R g  m; 

H e r e  the functions 0;:". DtC, 0,";. D E .  L$;.r, D:? a r e  given by E q s .  (7.127),  
(7.131). (7.134). ,, ~ 

Turning  to the second equality in  (7.158), we  i n s e r t  f o r  Dby i t s  exp res s ion  
f r o m  (7.138), for  DHx f r o m  (7.159), and for  K b y , B , ( t ,  t )  f r o m  (7.161).  As with 
Q$,*, the l a s t  two t e r m s  on the r igh t  in  Eq.  (7.138) are r ep laced  acco rd ing  to 
the  l a s t  two expres s ions  in  (7.140). T h i s  g ives  

D6,,> =Di;,O+ D$"+ D ~ : Y  +$ DAm,sin20,t f 

+'?De" cosZo , t+r2D "sin 'wot .  (7.163) 
r "2 

T h e  functions D:;, D i t  are given by Eqs .  (7.139), and Dty? by the f i r s t  
r e l a t ion  in  (7.141). 

For s m a l l  t ,  E q s .  (7.162), (7.163) give the approximat ion  

(7.1 64) 

For l a r g e  t ,  the  d i spe r s ions  Dbxrp Day, a r e  e x p r e s s e d  by 

Note that E q s .  (7.164) f o r  DbX,, Dey, contain only the  init ial  va lues  of I 
t he  r andom errors e x ,  e,, 8,, Amx, A m , ,  and Ams is not included a t  all. 
When taking the  sums on the r igh t  in Eqs .  (7.158), the in t eg ra l s  o v e r  
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t i p . , i r .  T I. h'\..: (T. ~ ' t .  :<,,,,;ir. T ' )  mutually cance l .  
evident if we approach  E q s .  (7  .I 19) somewhat  differently.  

T h e  r eason  for th i s  becomes  

In the f i r s t  t h r e e  equations in (7.119) we subs t i tu te  the va r i ab le s  

C8.t = A x ,  - rtb,, , 6y = hy2 f re,. 6z2 = 6% , (7.165) 

using the l a s t  equatic'ns in (7.119). 
\ n t  . \ { ) I :  on the r igh t  in t e r m s  of 0,. OY. Or and the i r  de r iva t ives  using the 
fourth, fifth, and s ix th  equations in  (7.119). 
AX,. hp,. bz? w e  then hai/e the d i f fe ren t ia l  equations 

A t  the s a m e  t i m e  we e x p r e s s  Airy ,  

F o r  the total  posit ion errors 

with the init ial  conditions 

As  we see, Eqs .  (7.166) on  the r igh t  do not contain the ins t rumenta l  

If we w r i t e  f o r  ds:, Op:. 6:2 a solution analogous to (7.121) for hr. t\!,- t k  and 
errors \m,,, l m Y v  A m z .  

ca lcu la te  the d i spe r s ions  f)ay2 accord ing  t o  th i s  solution, we na tura l ly  
end up aga in  with E q s .  (7.162), (7.163).  T h e  r e a d e r  will e a s i l y  ver i fy  it for 
h i m s e  If. 

total  position errors 6 . ~ ~ .  by,, 6 z 2 .  
(7.107) and for a sa t e l l i t e  in a c i r c u l a r  o rb i t  E q s .  (7.166). 
kind na tura l ly  c a n  be obtained in a g e n e r a l  case as well, a point kvhich niay 
prove helpful in s o m e  p rob lems .  Thus ,  turning to the g e n e r a l  e r r o r  equa- 
t ions ( l .95)-( l .97), we can  find the co r re spond ing  equat ions  for hs,. hp.. ?z2 
substi tuting the va r i ab le s  f r o m  (1.97) in E q s .  (1 .95) .  Making u s e  of (1 .97) ,  
we e l imina te  the ins t rumenta l  e r r o r s  \m,. A m y .  
the r igh t  s i d e s  of the equations.  Ins tead  t e r m s  containing the ang le s  e , .  H,:. 
'1; f r o m  E q s .  (1.97) are  introduced. 

T h e i r  init ial  values e n t e r  only the init ial  conditions. '  

In conclusion note that w e  twice used  the d i f fe ren t ia l  equations for the 
For  a s t a t iona ry  object t hese  a re  Eqs .  

Equations of th i s  

and the i r  de r iva t ives  f r o m  

57.3. THE E F F E C T  OF RANDOM INSTRUMENTAL 
ERRORS ON AIDED SYSTEMS 

7.3.1. A l t ime te r  c o r r e c t i o n  

In S2 .2  we have de r ived  the error equat ions  of ine r t i a l  s y s t e m s  with 
a l t i m e t e r  co r rec t ion .  Two a l t e rna t ive  s y s t e m s  w e r e  cons idered:  those  with 

* This  is dtso applicable to satellite motion in an ellipticai orbit. The elasttc ruspcnii<w ~f an ideal !inear 
accelerometer placed at  the center af mass of an object movins Ln a pure gravttational tielJ ts  nt>t strained 
!the ~cceleronieter readings Ire zero) irrrspective of the 3cwal orientaticn <if :ts iensitibr asis.  
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three a rb i t r a r i l y  oriented accelerometers ,  and with two acce le romete r s  in 
the plane of the geographical o r  geocentric horizon. 

axes xyz with the z axis  directed along r comprise  Eqs.  (2.16), Eqs.  (1.96), 
and the algebraic relations (1.108), (1.118). 
accelerometer  sys t ems  include Eqs. (2.28), Eqs.  (1.96), and again the 
algebraic relations (1.108), (1.1 18). 

processes  with correlat ion functions of the fo rm (7.124). 
section, w e  will only consider the c a s e  of a stationary object in the O,~*i1,;, 
axes and the c a s e  of a satell i te in a c i r cu la r  orbit .  

systems.  

F o r  three-accelerometer  sys t ems  the e r r o r  equations projected on the 

The e r r o r  equations of two- 

Let us consider these equations when the instrumental  e r r o r s  a r e  random 
As in the previous 

F i r s t  we will deal with the e r r o r  equations of three-accelerometer  
For a stationary object w e  have 

Y '  
6;. + o i b x  =An,  - r ~m 

by + 02by = Any + r Amz, 

(7.1 68) 

Comparison with Eqs.  (7.54) investigated in 7.2.1 shows that only the third 
equation i s  different.  
Db,,, Doy, of the solutions of the corresponding equations in (7.168) a r e  
therefore expressed by the previous relations, derived in connection with 
Eqs.  (7.54). 
of the third equation in (7 .I  68). 

Note that the left-hand side of the third equation in (7.168) has  the s a m e  
fo rm as the left-hand s ides  of the f i r s t  two equations in (7.168). 
contain the accelerometer  e r r o r s  An,, An,,, An, i n  equivalent position. Thus, 
if the dispersion D,, of the solution of the third equation in (7.168) is writ ten 
as the sum 

D6* = 064". + D;:O + D i t  + D t i ,  

the f i r s t  three t e r m s  can  be obtained f rom (7.79), (7.76) by a suitable change 
of indices. 

The dispersions Dbx. DbY. De,, De,. De,, Detr. De,,, 

It thus r ema ins  to find the dispersion Du=Dbr,  of the solution 

They al l  

(7.169) 

These t e r m s  thus take the fo rm 

~ b = ' =  a t  D~~ cos2 mot, D:? = D,,, sin2 q. I 
If the correlat ion function of the random al t imeter  e r ror  Ar is given by 

Kb,( t ,  t')= DA,e-ar ' f - t ' i ,  (7.171) 
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the  four th  t e r m  in (7 ,169)  c l e a r l y  c a n  b e  wr i t t en  in a f o r m  s i m i l a r  to the 
f i r s t  exp res s ion  in (7.170): 

E q s .  (7.169),  (7.1701, (7.172) give the  d i spe r s ion  of the  e r r o r  A : = - A : ~  
a t  any t ime .  For s m a l l  t we have  the approximat ion  

F o r  l a r g e  i ,  LJ,,z i s  asymptot ica l ly  e x p r e s s e d  by 

( 7 . 1 7 4  

T h e  d i spe r s ion  DEr g r o w s  in propor t ion  to t ime, w h e r e a s  in autonomous 
ine r t i a l  s y s t e m s  ( s e e  Eqs.  (7.58), (7.60), (7.66)) the d i spe r s ion  u,!, is a n  
exponentially increaz ing  function of t i m e  ( f o r  sufficiently l a r g e  1 ) .  

a c c e l e r o m e t e r  s y s t e m  are obtained f r o m  Eqs. (2.16), (1.96), (1,108), (1.118) 
where  we should take 

k'or a sa t e l l i t e  in  a c i r c u l a r  orb i t ,  the  error equat ions  of a t h ree -  

and have the f o r m  

(7.176) 

Compar i son  with 3 q s .  (7.119) aga in  shows that only the th i rd  equation i s  
d i f fe ren t .  However,  the  genera l iza t ion  of the solution of Eqs.  (7.119) to 
Eqs. (7.176) i s  a sorr.exhat m o r e  compl ica ted  problem than in the case of 
Eqs.  (7.54) and (7.16:3). Neve r the l e s s ,  compar i son  of (7.176) and (7.119) 
shows that the d i spe r s ions  Do,. De,, Doz. DJ,, and also the  d i spe r s ions  Du,~. Ddy3, 
Delr h:ave the s a m e  f o r m  in  the c a s e  of Eqs. (7.176) as in  the c a s e  of Eqs.  
(7.119). 

f r o m  (7.176) c a n  be found us ing  (2.28) w h e r e  we put 0, ( . )y=o,) ,  and 

It t he re fo re  r e m a i n s  to find the  d i spe r s ions  D~.=D~=, ,  Ddx2. Do, , .  
T h e  solution of the s y s t e m  compr i s ing  the f i r s t  and  the th i rd  equat ions  
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exp res s  a i i ,  p i j ,  Cf f rom (2 .230)  with e = 0, Y = %. This  gives 

(7.177) 

These expressions can be somewhat simplified i f  the t e r m s  with Am, are 
integrated by par ts .  W e  obtain 

(7.178) 

Now 

(7.179) 
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By t h e  s e c o n d  equat ton  in (7 .179)  a n d  the  l a s t  equat ion  i n  (7 .1761,  w e  have  

H e r e  

( 7 . 1 S l )  

T h e  o t h e r  t h r e e  t e r m s  i n  (7.180) a re  e x p r e s s e d  i n  i n t e g r a l  Eorni 

T h e s e  i n t e g r a l s  a r e  r e d u c e d  t o  p r e v i o u s l y  c o n s i d e r e d  cases. T h u s ,  the 
i n t e g r a l  in  t h e  e x p r e s s i o n  for 
only  in  that  the  6 . 1 ,  i n  t h e  i n t e g r a n d  h a s  b e e n  r e p l a c e d  1,vith 2#*1,,. By a n a l o g y  
v;ith ( 7 . 1 3 4 )  w e  t h u s  h a v e  

d i f f e r s  f r o m  t h e  s e c o n d  i n t e g r h l  in(S.12::t 

+ 2 cos ?out +sin' Po,+ + 

(7 .183)  

S i m i l a r l y  c o m p a r i s o n  of t h e  s e c o n d  a n d  t h i r d  i n t e g r a l s  i n  (7 .182)  with the  
i n t e g r a l  i n  (7.78) g i v e s  
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Eqs.  (7.180), (7.181), (7.183), (7.184) completely determine the dispers ion 
Dbz, as a function of t ime, if the correlat ion functions of the random instru-  
mental  e r r o r s  Anx+ An,. Am,, Ar are given by Eqs .  (7.124), (7.171). 
t , we have the approximation 

For s m a l l  

For l a rge  t ,  

(7.186) 

Comparison of (7.186) with (7.157) shows that in prolonged operation the 
random e r r o r s  bz2 caused by the instrumental  e r r o r s  Anx and Anz of a three-  
acce le romete r  sys t em with a l t ime te r  co r rec t ion  have smaller dispers ions 
than.in a n  autonomous sys t em.  
grow in proportion to time, the proportionality coefficient i s  s m a l l e r  in  the 
aided sys t em with a l t ime te r  correct ion.  In this case, however, the disper-  
s ion D6+ acquires  an  additional t e r m  associated with the a l t ime te r  random 
e r r o r  ( the las t  t e r m  in (7.186)). 

Let u s  calculate the dispers ions De,v and Dox2. 
dispersion D,, of the solution of the f i r s t  equation in (7.176). 
known, using the eighth equality in (7.168) we wri te  

Although in e i ther  c a s e  these dispers ions 

T o  find De,, w e  requ i r e  the 
Once this is 

De =&. (7.187) 
I Y  r3 

The  solution 6.x of the f i r s t  equation in  (7.176) has  been found before.  
This  is the f i r s t  equation in  (7.179). By this equation 

where the f i r s t  t h ree  t e r m s  are 

(7.1 89) 

(7.190) 

340 



. Therefore,  

(7.191) 

(7.192) 

Eqs. (7.187)-(7.189), (7.191)a (7.192) define the dispersion De,, at  any 
time. F o r  sma l l  t ,  we have the approximation 

F o r  l a rge  t ,  

(7.193) 

(7.194) 

This asymptotic expression can be compared with Eq. (7.137) for the 
dispersion De,, of an autonomous sys t em.  Eq. (7.194) contains a n  additional 
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(7.197) 
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t a k e  the fo rm 

I' 

i5,sa -(A: ~ > y  = la c r _\A r;  

t i ,  = A m r .  A,, = Ant , ,  O2 = I m z :  

0, ~ 

+ 0: ijx = .\n ~ - r & 

(7.199) 
- ?!. . t + l . . = & ,  r) - - - - A  r i I 2  - 2' 

:!.I.; = Ax + rtl,,,. =&I* - rOx,  

Eqs .  (7.199) differ f r o m  the error equations (7.168) of a th ree -acce le ro -  
nie7tt:r s y s t e m  only in that they do  not contain the th i rd  and the las t  equations 
from (7.168) ( the  equations f o r  h z ,  h z , ) .  Since the errors 15; .  A=> do not e n t e r  
the remain ing  equations, the ana lys i s  c f  Eqs .  (7.199) leads  to the s a m e  
r e s u l t s  as Eqs.  (7 .168) .  

of  the two-accelerometi?r s y s t e m  are der ived  f r o m  Eqs .  (2.28),  (1.96), 

( 1 . I  081, ( 1 , 1 1 8) where  t.v e put (or = c ) , ~  = r'= 0, coy = o , ,  = 
This  g ives  

(- 'onsider t h e  case of a sa te l l i t e  in c i r c u l a r  orb i t .  The  e r r o r  equations 

= cons  t ,  r = cons  t . 

:*;; = - ?ui,, A i  2 A ~ I , ~  - r I;!,,. 
+ 03 by = Anj + r ~ m , ~  - rv) , Amz; 

t I ,  +UI,,O~ = l m x .  

if?, = Amv,  
tl: - o>u@: = Im,: 

I), t: = -%, IJ,, = 

h::, = 6 . ~  + rO?. hp2 = 6y - rQx .  

r!.r 
, OIz = - tI2; 

T h i s  s y s t e m  again does  not contain the th i rd  and the last equations f r o m  
The  s t r u c t u r e  of the f i r s t  equations, (7.176) ( the  equations f o r  6z and 6 : ; ) .  

however, i s  different.  

appIicable to Eqs .  (7.200).  
t h e  c a s e  of Eqs .  (7.200) evidently have the s a m e  va lues  as for the case of 
Eqs .  (7 .176) .  
and have to be calculated anew. 

the f i r s t  equation in (2.75) 

T h e  r e s u l t s  obtained f o r  Eqs .  (7.176) are the re fo re  only partially 
T h e  d i spe r s ions  DHr,  De , UUz,  Dd,,c, Dt+i2. D,,.,, D,)jl for 

The  d i spe r s ions  D,\r. Dtl,,. D,,.rd on the o the r  hand, are different 

The  f i r s t  equation in (7.200) was  solved in 52.3.  I ts  solution i s  given by 

(7.200) 
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The f i r s t  two t e r m s  of this sum a r e  

n,, Oxo = DOx** D,, b h  - - D,;ot'. 

The las t  three t e r m s  a r e  given in integral  fo rm 
I f  

D,"X"J = [ [ K A , ~  (T, T') (t - 7)  (i' - 7') dT dr', 

Db3,"'~ = r2 [ D ~ , ~ y f ' +  [ 1 K A , ~ ,  (5,  5 ' )  dr d5' - 
0 I1 

I I  

u o  
t 

0 1 - 2t  5 Kamy(T8 O ) d T  . 

(7.204) 

(7.2 05) 

Inserting for the correlation functions K A ~ , ,  KA,, Kamy 01 the random 
instrumental  e r r o r s  Anx, A r ,  Amy their  expressions f rom (7.124), (7.171) and 
integrating, w e  obtain 

Eqs. (7.203), (7.204), (7.206) give the dispersion Dal of the random e r r o r  
6 x  and the dispersion De,,> since De, ,=Ds, /r2.  
simple approximation 

For sma l l  t ,  we have the 

(7.207) - (D,, + D,&* + D t4 + wiarDArt3) tg 2 pYDAmyt3. D e , y -  r2 Anx  

For  large t ,  

Comparison of the asymptotic expressions (7.208), (7.194), (7.137) for the 
dispersion De,, in two-accelerometer and three-accelerometer sys t ems  with 
al t imeter  correct ion and in autonomous inertial  sys t ems  shows that the two- 
accelerometer  system is characterized by much higher dispersions Delr than 
the three-accelerometer sys t em.  Eq. (7.208) is much closer  in i t s  s t ructure  
to Eq. (7.137) for the dispersion De,, in an autonomous system than to 
Eq. (7.194) for  this dispersion in a three-accelerometer system. 

Eqs. (7.202), (7.123), we find 
Let u s  calculate the dispersion &,. Using the equality 6 x 2 = 6 x + r 6 ,  and 

I 

6x,=6xo+ re; + (&O+r Am:+ 20, Are) t + j (t  -=)An,  d r  - 20, Ar dr.  (7 209) 
I, 11 
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We t h u s  have 

H e r e  the f i r s t  two ttrrms are given by Eqs.  (7.204) and 

(7.2 10) 

(7.211) 

the fourth and the fifth t e r m  a r e  given by the third and the f i r s t  equation in 

(7.206) and the dispers ion D i t ;  i s  calculated f rom the equality 

D:emqi' = r2D t'. (7.212) 
A - 3  

For sma l l  t ,  w e  have f rom (7.210) 

F o r  large t ,  the simplified asymptotic expression is 

Comparison of this expression with Eqs.  (7.198), (7.164.a) leads to the 
s a m e  conclusions a s  the comparison of Eqs.  (7.208), (7.194), (7.137) fo r  the 
dispersion 

7.3.2. Combined al t imeter  and Doppler correct ion 

Consider the effect c,f random instrumental  e r r o r s  in a sys t em where a n  
al t imeter  and a Doppler velocity me te r  supply simultaneous guidance infor- 
mation. We will only analyze the simplified e r r o r  equations of Chapter 5, 
i.e., Eqs.  (5.297), (5.29:3), Eqs.  (5.308;, (5.309), Eqs .  (5.311), Eqs.  (5.313), 
and finally Eqs.  (5.335), (5.337), (5.340). Since the simplified equations of 
three-accelerometer  s y s t e m s  (5.297), (5.299) and (5.308), (5.309) a r e  
analogous to the simplified equations of two-accelerometer sys t ems  (5.31 1) 
and (5.313), w e  need only consider the two-accelerometer case. The  r e su l t s  
of this analysis  a r e  then readi ly  extended to Eqs.  (5.297), (5.299) and (5.308), 
(5.309). 

We have seen  in Chapter 5 that the second group of e r r o r  equations in the 
c a s e  (5.311) i s  the same  a s  fo r  a n  autonomous iner t ia l  system. 
symmet ry  of these equations and Eqs.  (5.311), we conclude that only the 
following equations should be considered: 

Using the 

a i  + k, ax + ( 1 + k2) 0; bx = 

= i l  + k:!) Anx - r Ah, + k, - r  Amy\ - k2 l V o x :  
AX qr = r ,  e,, = -8,; 

t i $  = I m v +  4, =h,: 
ax2 = ax c re , .  

(7.2 1 5) 
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Similarly, Supplementing the f i r s t  equation in (3.313) by the last flve 
relations in (7.215) we obtain a system ( k ; o ; = k , ) :  

6x+ k , 6 ; + ( 1  + k Z ) $ , 6 x = ( 1  +k,)An,f 

f ~ A n , - r A m , -  k Z A V D x - ~ A V , Z ;  k 

4 4 
c f  l v - 7 .  - e,,=-e8,; (7.216) 

Now supplementing Eqs. (5.335), (5.337), (5.340) by the necessary 
relations and using their  symmetry, w e  obtain the partial system 

6; f k ,  62 + 3 ( 1  +k2)6x = ( I  +k2) An, - \ 

- r Am, - k2 AVD, + k ,  (AVD, - r Amy); 

e,,=.$., e,,=-ez; 
6, = Am, + 3 k AVO,, 8, = Am,; 

6x, = 1 (ax + rt).,). + kz I 

(7.217) 

Note that the equations for €Ilz, BZ a re  the same in Eqs. (7.215), (7.216), 
(7.217), being analogous to the corresponding equations for an autonomous 
inertial system. They were considered in the previous section and are  of 
no interest at  the moment. 

De,y.  Db,, of the random orientation and position e r ro r s .  
before, that the instrumental e r r o r s  hn,, Am,, AVD, a r e  stationary uncor- 
related random processes.  
equalities 

Consider Eqs. (7.215). Our problem is to calculate the dispersions 
We assume, a s  

The correlation functions a r e  defined by the 

From the second relation in (7.215) we get De,y=Dbx/r2.  Since the solution 
of the homogeneous equation for 6x is damped (and an appropriate choice of 
k, and k2 w i l l  ensure a sufficiently fast damping), only the steady-state value 
of the dispersion D,, need be calculated, using Eq. (7.48). 

The dispersion D,, can be written as the sum 

(7.219) 

Since the spectral  density is I 
(7.220) 

and s imilar  expressions a r e  obtained for SA,,," and ShV,,, the te rms  on the I 
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right in Eq. (7 .219 )  a r e  given, in acco rdance  kvith (7 .48) ,  by 

The  in tegra ls  on the right a r e  wr i t ten  in the fo rm 

(7 .222)  

\:here in gene ra l  

(7.2231 

I a l l  the roots of h , i x )  = 0 a r e  in the left half-plane).  

polynoniiaIs g,,cx, and h,,(wi.'*' Thus, for n = 1,2, 3 ,  4, we have"x' 
The  in tegra ls  ( 7 . 2 2 2 j  are ra t iona l  functions of the coefficients of the 

(7.234) 

For  the f i r s t  in tegra l  in i7.221),  fl =: 3 and 

a , , = I ,  a , = k , f n ,  a , = ( I + k , ) o ~ + k , a .  1 
(7 .225 )  

a ,  =aoijl +k:). b , ,=O.  b, = 0 ,  b . =  1 .  I 
Inser t ing  these  va lues  in the th i rd  equation in (7.224), we obtain 

D>*r = ( k ,  f a )  ( 1  + k,) . (7.226)  
'" '-'''x 

m';k, [@:(I f k 2 ) f a ( k l + a j ]  

T h e  only d i f fe rence  in the coefficients ut of the in t eg ra l s  (7 .221)  is that 
The  coefficients hi are given by 

h.=O. b ! = - l .  b?=k:. (7 .227)  

the  u of (7 .225 )  h a s  been r ep laced  with 0 .  

* 1; 1 1  I e a  k < > v ,  ti.\'. Koleoaniya (Oscilldtb,nsl. - Costekhizdat .  1'954 
The values of the  integra!s I ,  t o r n  = 1. ...., 7 c a n  be found i n  P u p a c h e v .  \ , S ,  
tdnktsil i ee prrmenenie  k z.idachain avtornatichesk..)go uprav!eniya (Theor); of Rands?! Functions and Its 
Applicat ion t o  Automstic  Ct,ntrolj. - Gastekhizdat. 1 j 57 .  

Teoriys sl.!chatnykh 



A l l  this gives 
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(7.228) 

(7.229) 

Eqs.  (7.219), (7.226), (7.228), (7.229) give the steady-state dispersion I&, 

De = L o  (7 .2  29a) 

and using the equality 

I Y  rz * r  

we find the steady-state dispersion D e l y .  

the axis  x .  
Let us  now calculate the dispersion Do,, of the total position e r r o r  along 

Using the las t  equality in (7.215), we have 

DOX, = D d r  + r2De, 4- ? r K b x .  eY ( t s  t ) .  (7.230) 

Q t y  has  been calculated above ( fo r  sufficiently large t ) .  4, has the s a m e  
value as in an autonomous inertial  system, and is thus given by (7.72) .  Since 
the f i r s t  t e r m  in (7.230) is the known function Obxr w e  may write instead of 
Eqs.  (7.72)  

(7.231) D =$o+2DAmy (p-F). t 1  

t'Y 

It thus r ema ins  to find K o x , e y ( t .  t ) .  The random instrumental  errors and 
the initial conditions a r e  assumed to be uncorrelated, and therefore by the 
f i r s t  and the fourth equation in (7.215) w e  have 

where 

Inserting K and K A h y ,  A~ f rom (7.218), (7.99) in the integrand on the 
A*Y V 

right in Eqs.  (7.232), we find 

(7.234) 
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Developing the  double in t eg ra l  on the  r igh t ,  we find 

LVhen the t r ans i en t s  are  damped 

('7.236) 

T h e  d i spe r s ion  D A ~ .  i s  now wr i t t en  as the  s u m  

w h e r e  the f i r s t  two t e r m s  are ca lcu la ted  from (7.226), (7.229),  and the l a s t  
t e r m  i s  given by 

(7.238) 

(7.239) 

If 

I ( ,  p. y > k l ,  o , , ( I + k , )  and k2>>l+ 17.240) 

Eqs.  (7.226),  (7.228),  (7.229) can  be g r e a t l y  s impl i f ied .  
the d i spe r s ions  De,,. D,,+, are also s impl i f ied .  
e x p r e s s i o n s  

The e x p r e s s i o n s  fo r  
We obtain the approx ima te  

(7.2 4Oa) 
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T h e  s e c o n d  equat ion  above  s h o w s  that  the  d i s p e r s i o n  &,, is eventua l ly  
d e t e r m i n e d  a l m o s t  e n t i r e l y  b y  the  t i m e - p r o p o r t i o n a l  t e r m  which depends  o n  
the  g y r o  e r r o r s .  F o r  l a r g e  t ,  w e  have  the  a p p r o x i m a t i o n  

(7.241)  YT' D ~ ~ ,  = 2r2DA,,, 

Lt'e h a v e  found the d i s p e r s i o n s  Dg,,, a n d  Day, f o r  the  e r r o r  equat ions  (7.215). 
Let u s  now find the  c o r r e s p o n d i n g  d i s p e r s i o n s  f o r  t h e  case of Eqs.  (7 .216) .  
Only the  f i r s t  equat iop i s  d i f fe ren t  in the  two s y s t e m s .  
d i f fe rence  in  the  d i s p e r s i o n s  De,y a n d  L)bx2 i n  t h e s e  two cases i s  d e t e r m i n e d  
b y  d i f f e r e n c e s  i n  D,,? a n d  Kbx, g , , ( f .  t ) .  

d i s p e r s i o n  Dbc 

T h e r e f o r e ,  t h e  

By t h e  f i r s t  equa t ion  i n  (2 .216) ,  w e  may w r i t e  for t h e  s t e a d y - s t a t e  

a n d  the  t e r m s  of t h i s  s u m  are g iven  by 

T h e  i n t e g r a l s  in  (7 .243)  a re  e v a l u a t e d  as i n t e g r a l s  (7 .221)  above  
r e s u l t s  g i v e  

(7.242)  

(7 .243)  

T h e  

(7.244)  

Eqs .  (7.244), (7.242) and  t h e  equal i ty  

De = Dbx/r2 
I Y  

I g i v e  the s t e a d y - s t a t e  d i s p e r s i o n  DeIy .  
the  fol lowing aDDroximation for t h e  s t e a d y - s t a t e  d i s p e r s i o n  DR,. : 

If inequal i t ies  (7.240) apply,  w e  o b t a i n  

+ (7.245) 
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The  d i s p e r s i o n  L!.. a l s o  can  be  ca lcu la ted  f r o m  Eq. (7.230).  T h i s  
equation includes Unr, D, and K % < ,  tt .  f ) .  Obr h a s  been  found before ,  the 
I‘unction ‘)e 
gi\ren by ( 7 . 7 2 ) .  Since i v e  a r e  in t e re s t ed  in the  asynip to t ic  value of n,,., , 
Eq. (7.72) c a n  be r ep laced  by i t s  asymptot ic  f o r m  (7.231).  T h e  function 
x,,. &, r ) ,  hou.ever, should be ca lcu la ted  anew, s i n c e  (7.236) obtained 
for Eqs .  (7 .215)  doe:; not apply to Eqs.  (7.216).  

i s  the  s a m e  a s  for a n  au tonomous  ine r t i a l  s y s t e m ,  i . e . ,  it i s  

i 

F r o m  the  f i r s t  ar.d four th  equat ions  in  (7.216) we have  

. I )  

t i % c ,  , & , , i f ,  t l  = - L  1 j K.,;,~ A m v i T ,  T’le-~l‘-risin~(t-5)~T~T’, (7 .246)  
> .  ,, I, 

where  E and Y a r e  given by (7.233).  
function K,.:, 

Using (7.99) for the  c r o s s - c o r r e l a t i o n  
,.,, i., we f u r t h e r  have  

i t  

K, , , ,  +I, ,  t f ,  t ) = =  9 D> ,; (1 S l $ n ( T - T ’ ) ~ ~ ~ ~ ~ ~ - ~  i - t ~ , - ~ ’ S i n \ . l ~ f - T ) c / T d T ’ .  (7.247) 
Y .  

,: u 

Taking the i n t e g r i l ,  we obta in  

(7.248) 

In the steady state, 

TCI comple t e  the ca lcu la t ion  of the  d i s p e r s i o n  D,,,, E q s .  (7.242),  (7.231),  
67.2491, ( 7 . 2 4 4 )  shou-d be  i n s e r t e d  in (7 .230) .  
find approx ima te ly  

Using inequal i t ies  (7.240),  we 

(7.250) 

For l a r g e  t ,  when the  d i s p e r s i o n  D%%x is d e t e r m i n e d  by the  t e r m s  l i n e a r  
i n  t ime,  Eq .  (7.250) r e d u c e s  to  the  approx ima te  r e l a t ion  (7.241).  

Let u s  now c o n s i c e r  Eqs.  (7 .217) .  It i s  r e a d i l y  s e e n  that on ly  the  fou r th  
and  the l a s t  equat ion  a r e  d i f fe ren t  from those  i n  E q s .  (7.215). T h e  f i r s t  
equa t ions  are  ident ica l  in  both s y s t e m s .  T h e  d i s p e r s i o n  Dbxr and thus  also 
L ) ~ , ~ ,  t h e r e f o r e  have  the same value as for the  case of Eqs .  (7.215).  
a r e  given by Eqs. (7.219), (7.2263, (7.228), (7.229), (7.229a).  
E q s .  (7.217) the  p rob lem is thus  to find the  d i s p e r s i o n  Dk.. 

T h e y  
In t h e  case Gf 

Hy the  l a s t  equa1i:y in  (7.217) 
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W e  have a l r eady  noted that the dispers ion Dn, is the s a m e  a s  for  Eqs. 
(7.215). Indeed, comparing the 
fifth equation in (7.215) and (7.217), using Eqs. (7.72), (7.218), and seeing 
that the instrumental  e r r o r s  AV,, and Amy are uncorrelated w e  find 

The dispersion De, is a l so  easily found. 

For large t ,  e-Rf and e - y t  a r e  ignorable and we have asymptotically 

(7.253) 

It now rema ins  to find the function Kb,,ay(t, t ) .  From the f i r s t  and the 
fourth equation in (7.217)  we get 

f f  

K b r , B y ( t s  t ) = - $ s  J [ k , K A m , ( T ,  7’)+ 
I) f l  

+ K A h y ,  A m y  (7, T’)] c e ( f - T )  sin Y (t - 7) dr dr’ + 
I f  

+ % s [ ~ I K A V , ,  (7, T’) - 
( 1  n 

- k2KhpDI ,  A V D x  ( 5 ,  T‘)] e -e  c f - r ) s ~ n  v (t - 7) d7dr’. (7.254) 

It is given by The f i r s t  integral  on the right has  been calculated before.  
the expression on the right i n  (7.235). 
evaluated and we find 

The second integral  is s imilar ly  

I 
. .  

X [-(e + y) sin vt + V C O S V ~ ]  e-(e+y)f  + 

To find Ds,, in the case of Eqs.  (7.217), we should inser t  for  Dbx in 
Eq. (7.251) i t s  expression f rom (7.219), (7.226), (7.228), (7.229), f o r  D* i t s  
expression f r o m  (7.253), and f o r  Kax. e . . ( f .  t )  i t s  expression f rom (7.254), , 
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(7.235), (7.255). 
lations lead to the approximate formula 

If the inequalities (7.240) a r e  applicable, a l l  these manipu- 

(7.257) 

For sufficiently l a rge  t ,  the dispers ion D,,,: i s  c lear ly  determined by the 
t e r m s  l inear  in t ime.  We thus have approximately 

(7.258) 

Comparison of Eq. (7.258) with Eq. (7.249) shows that the correct ion 
routine corresp0ndir.g to e r r o r  equations (7.217) should be p re fe r r ed  to 
correct ion routine corresponding to e r r o r  equations (7.215), (7.216) when 

D I L . ~ ,  << r2DAm . (7 2 5 9 )  

Otherwise, correct ion routines corresponding to  Eqs.  (7.215), (7.216) a r e  
m o r e  effective. 

Let us  compare  the dispers ions (7.240a) obtained f r o m  Eqs.  (7.215) with 
the dispers ions (7.245), (7.250) obtained f rom (7.216). 
f i r s t  equation in (7.240a) with (7.245) shows that the dispers ions of or ienta-  
tion e r r o r s  due to ra.ndom acce le romete r  and Doppler e r r o r s  are always 
g r e a t e r  in a sys t em corresponding to Eqs .  (7.216). 
orientation e r r o r s  due to random gyro e r r o r s  IS conversely g r e a t e r  in 
sys t ems  corresponding to Eqs.  (7.215). 
should thus be made considering the relative values of the random e r r o r s .  

values of the random e r r o r s ,  as well a s  their  dispers ions.  
expectation value of EI Doppler e r r o r  is considerable,  a sys t em functioning 
according to Eqs.  (7.216) probably should be p re fe r r ed  to sys t em (7.215) with 
s m a l l e r  dispers ions ,$::D.r, D;”D.~, since the right-hand s ides  of (7.216) contain 
only the derivatives of l \VDr. ’’ 

effect of acce le romete r  and Doppler e r r o r s  on the dispers ion DbX, of the 
position errors is the s a m e  as on the dispers ion of orientation e r r o r s .  With 
r ega rd  to gyro e r r o r s ,  the si tuation i s  somewhat different.  The  t ime-  
proportional t e r m s  a r e  the s a m e  in the c a s e  of Eqs. (7.215) and (7.216). 
Thus, if  the gyro e r r o r s  a r e  fa i r ly  large,  and the sys t em functions for a 
long time, the gyro errors (dr i f ts)  predominate and the s y s t e m s  correspond-  
ing to Eqs.  (7.2 15) and (7.2 16) are virtually equivalent with r e g a r d  to position 
e r r o r  dispers ions.  

Note that the above comparison is based on the approximate expressions 
which a r e  der ived assuming inequalities (7  2 4 0 ) .  
apply, we should compare  the exact expressions f o r  the dispers ions.  Another 

Comparison of the 

The  dispers ion of 

T h e  choice between the two s y s t e m s  

K’hen choosing the correct ion routine, we should consider  the expectation 
Thus if the 

Comparison of the second equation in (7.240a) with (7.250) shows that the 

If these inequalities do not 
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point to r emember  is that Doppler correct ion is intended to ensure suffi-  
ciently effective damping, and not only to reduce the steady-state e r r o r s .  

7.3.3. Simultaneous al t imeter  
and astro-Doppler correct ion 

In addition to a l t imeter  and Doppler correction, we now introduce a s t ro -  
correct ion and consider the combined effect of the different random e r r o r s .  

W e  will only deal with the case  of l inear as t rocorrect ion.  When a s t ro -  
correct ion is introduced, only the left-hand s ides  of the fourth and the fifth 
equation in (7.215) are changed, and also the right-hand side of the f i r s t  
equation ( s e e  (6 .66 ) ) .  Since the equations for  0, and a r e  identical, it 
suffices to consider only the following set of equations: 

6x + k ,  & + ( I  + k 2 )  a{& I 

= ( 1  + k,) ~n I - r (~ni,ktj,) + 
+ k ,  [AI.’,, - r ( i lmpkey) i  - kz lVD, .  

h X e,,=I. 
6, + kt) ,  = A m y ,  

ax2 = bx + rOy. 

Eqs. (7.216) a r e  thus replaced by the following equations: 

(7.260) 

(7.261) 

Finally, Eqs.  (7.217) a r e  replaced by ( s e e  Eqs.  (6.166)-(6.168)) 

(7.262) 

6% + k ,  & + ( I  + k2) a;6x - rk8 ,  - rR,kBy = 
’ 

= ( 1  + k2)  An, - r A i y  + 
+ k ,  (AV,, - r Amy) - k, AVDx, 

k 
( 1  + k , ) e , +  k e y +  k2$ = Am, + AVD,. 

e, + ktf, = Am** 

o , , = ~ ,  o,,=-e8,, 6 X  

ax, = 6~ + r e , .  , 
For k = 0, substitution of variables (6.169), reduces Eqs.  (7.262) to 

Eqs .  (7.217). 
Consider Eqs.  (7 260) .  

De, D6.r- De,, Dbx, of the e r r o r s  8, 6x .  e,, 6x2. 
instrumental  e r r o r s  An,, Amy, AV,, are taken in  the fo rm (7.220). 

Let us  calculate the steady-state dispersions 
The spec t r a l  densit ies of the 
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$ - .  . k t  > I '  , f a +  \ [ I l t ' >  ~>YTF ' \ , ' \  

L rom t h e  t h i r d  e q u i t i o n  i n  (7 .260)  and  the  s e c o n d  e q u a l i t y  i n  (7 .218)  w e  
have 

(7 .263)  

To e v a l u a t e  the  i n t e g r a l  o n  t h e  r igh t ,  \ y e  u s e  r e p r e s e n t a t i o n  (7 .222) .  H e r e  
~ = 2 ,  a n d  u , . = 1 ,  a ! ~ k - f i . a : = k p . b , , = 0 ,  b , = 1 .  By t h e s e c o n d e q u a t i o n  in 
( 7 . 2 2 4 ) ,  v;e h a v e  

As b e f o r e ,  

D.i, = 7 I Der, ( 7 . 2 6 5 )  

T h e  d i s p e r s i o n  D,, c a n  b e  w r i t t e n  as  t h e  s u m  

11, = 0,;: I n,;,!'o.e + D;;~)., 

ir.here o n  t h e  r igh t  $\e h a v e  t h e  s u m  of d i s p e r s i o n s  of t h e  independent  r a n d o m  
t'rt'or.5 \ v t .  3 L ~ p k ,  h:, tvhich e n t e r  t h e  r igh t -hand s i d e s  of E q s .  (7 .260) .  
i 'learij- t h e  d i s p e t * s i o n s  D,:TL a n d  f),,',,iC'' h a v e  t h e  same v a l u e s  as t h e  n,;:~ a n d  
/!.'',:, &tained  for E q s .  (7.2'15). 
(7 .226)  a n d  (7.229) .  

f i r s t  equa t ion  in  17.260) 

(7 .266)  

The- l a t t e r  d i s p e r s i o n s  a re  g i v e n  by E q s .  

To f ind  t h e  t e r m  0,?'7.; note  that  by  put t ing i n  t h e  r i g h t - h a n d  s i d e  of t h e  

-k = 0.  N'D,r = 0, 

and wr i t ing  b, for the  d i f f e r e n c e  h i ,  - kO, b y  t h e  t h i r d  equat ion ,  ue  r e d u c e  
t h e  firs: equat ion  i n  (7 .260)  to t h e  f o r m  

sx -+ k, b i  T ( \  k,,;,bx = - r (UY + k d ) 1 Y '  (7 .267)  

T h e  t r a n s f e r  func t ion  

t h e r e f o r e  c a n  b e  writte.1 i n  t h e  f o r m  

We m a d e  u s e  of t h e  equal i ty  

Now, s e e i n g  tha t  

(7.268) 

(7 .269)  
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\ v e  o b t a i n  by (7 .48)  

(7 .271)  

I n s e r t i n g  t h e s e  v a l u e s  of t h e  c o e f f i c i e n t s  a,, b, i n  the  f o u r t h  equat ion  in  
(7 .224)  w e  obta in  a f t e r  obvious  s i m p l i f i c a t i o n s  

“ P D A m ,  
Dhmy bx E------ <k + p) [3(‘ + k 2 ) ( k  + p) + ‘pf- R ]  ( k l  + &+ p)] x 

x ( k p + [ k o + k , ( k + P + k , ) ]  + w : ( 1 + k , ) * +  

+ @ ( l +  4) [ k ,  (P+ k) + k ’ t  PI I-‘. (7 .272)  

Eqs.  (7 .266) ,  (7 .226) ,  (7 .229) ,  (7 .272)  g i v e  t h e  s t e a d y - s t a t e  d i s p e r s i o n  L)b& 

for a n y  v a l u e s  of the  c o r r e c t i o n  p a r a m e t e r s .  
a p p l i c a b l e  a n d  s i n c e  u s u a l l y  

If t h e  i n e q u a l i t i e s  (7 .240)  a re  

k>> kl,  %W** (7 .273)  

w e  o b t a i n  t h e  fol lowing a p p r o x i m a t e  e x p r e s s i o n  for t h e  d i s p e r s i o n  Dk: 

(7.274) 

L e t  US now c a l c u l a t e  the  d i s p e r s i o n  Dbz,. A8 in (7.2661, w e  w r i t e  

DbX, = 02 + D P  + $2. (7.275) 

H e r e  t h e  f i r s t  two t e r m s  o n  t h e  r i g h t  are r e s p e c t i v e l y  e q u a l  t o  DtXnx a n d  

Dt:Dx i n  the  s u m  (7.266),  w h i c h  are g i v e n  b y  (7.226)  a n d  (7.229): 

D t 2  = D t P ,  
DAVDX ~ DLVDX. 

To f ind  t h e  t h i r d  t e r m  in (7.275). w e  u s e  the e q u a l i t y  
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which is obta ined  a l o n g  t h e  s a m e  l i n e s  as Eq. ( 7 . 2 7 0 ) .  
T h e  i n t e g r a l  in  (7 .276)  is c a l c u k t e d  u s i n g  t h e  f o u r t h  r e l a t i o n  i n  1.7.224) 

T h e  Coeff ic ients  t i ,  a r e  g i v e n  by the  f i r s t  f o u r  e q u a l i t i e s  in (7 .271)  and  the  
c o e f f i c i e n t s  bt a r e  r e s p e c t i v e l y  

i 7  z:il h = I?  h _ I ,  I .  = = v , , . , [ - / ; , j . ,  ( ' i , 2 7 7 /  

LVe t h u s  f ind 

;,: ; k , 4  ( I - + 1 /t 1;) 1 fq ;  - it, 1 k ,  f k + (,)I 1 :i; 
>A: t t . J : ( l  f k ~ ) ~ - ~ m r ( ~  - -k  - L  ) ~ k - + ~ ; - - k , ( k + ~ , l ] -  

t kfP [/:I; - k ,  I /i, - k - p l J l - 1 .  (7 .275)  

Eqs .  (7 .273) ,  (7 .226: ,  (7 .229) ,  (7 .276j  d e t e r m i n e  t h e  d i s p e r s i o n  f . l , fr  f o r  
a r b i t r a r y  c o r r e c t i o n  c o e f f i c i e n t s .  If t h e  c o e f f i c i e n t s  a r e  r e s t r a i n e d  i n  t h e  
s a m e  Lvay a s  in  t h e  d e r i v a t i o n  of ( 7 . 2 7 1 ) ,  we have  the  a p p r o x i m a t i o n  

(7 .279)  

C n n s i d e r  E q s .  17.361). T h e  t h i r d  equat ion  i n  (7 .261)  c o i n c i d e s  x i t h  the  
t h i r d  equat ion  i n  ( 7 . 2 G O ) .  

6t.for.e by (7.2641. 

T h e  d i s p e r s i o n  De,, i s  t h e r e f o r e  e s p r e s s e d  a s  

I t  thus  r e m a i n s  to c a l c u l a t e  t h e  d i s p e r s i o n s  Ob,, a n d  
U!.t'. 

T h e  d i s p e r s i o n  D , ,  is w r i t t e n  as t h e  s u m  

D,, , = fi:r7.t + Di:'D.r + Di:Y. ( 7 . 2 8 0 )  

As b e f o r e ,  
I 

i y  r -  Db.r De =- 

C o m p a r i s o n  of i 7 .261 )  a n d  (7.216)  s h o w s  tha t  D,:r'.t and f),:r"D.r a r e  g iven  by t h e  
first a n d  t h e  t h i r d  e q u a t i o n  i n  (7 .244) .  For  D.;c)ly we h a v e  

T h e  i n t e g r a l  o n  t h e  1-ight i s  w r i t t e n  i n  t h e  f o r m  (7 .222) .  For t h e  coef f i -  
c i e n t s  LI, of t h e  polynomia l  l t + ( , x )  w e  h a v e  t h e  same v a l u e s  as i n  (7.271);  t h e  
c o e f f i c i e n t s  b, are  r e s F e c t i v e l y  
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Inser t ing  these  coefficients u, and b, i n  the  four th  equation in  (7.224),  we 
obtain a f t e r  s o m e  s impl i f ica t ions  

' 2 b D A m y  
k ,  ( R f p )  [3(' + k 2 ) ( k + P ) + k ~ k b ]  x D'"y =- 

b.r2 

x M ( 1  + W + W ; ( l + k z )  Ik, (k + P) + k2 + P21+ 

+ kb [kb + k,(k, + k  + P)1 ) - I .  (7.283) 

If the a s t r o c o r r e c t i o n  coefficient i s  f inite but f a i r l y  l a r g e  ( i . e .  it s a t i s f i e s  
(7.273)) and inequal i t ies  (7.240) are applicable,  we  obtain the  following 
approximat ion  from (7.283): 

(7.284) 

F r o m  (7.280), the  first and the  th i rd  equat ions  in (7.244) us ing  (7.240), 
and f r o m  (7.284) we now have the approximat ion  

(7.285) 

Compar i son  of (7.274) with (7.285) shows  that given equal  numer i ca l  
va lues  of the  p a r a m e t e r s ,  the  coefficients be fo re  D-,nc and D A V , , ~  are l a r g e r  
in Eq.  (7.285) and the coef f ic ien ts  be fo re  fl~,,,\, a r e  the same in both c a s e s .  
T h e  approx ima te  d i spe r s ion  of t he  a c c e l e r o m e t e r  and Doppler  errors 6x f o r  
a s y s t e m  with e r r o r  equat ions  (7.261) is thus  l a r g e r  than for e r r o r e q u a t i o n s  
(7.260), w h e r e a s  the  d i spe r s ion  of t he  g y r o  e r r o r s  is the  s a m e  for error  
equat ions  (7.261) and  (7.262). 

ponding to  E q s .  (7.261).  
Le t  u s  ca l cu la t e  the  d i spe r s ion  Dbxl of the to ta l  posit ion error 6w, c o r r e s -  

We have  

H e r e  

(7.287) 

w h e r e  D<<: and  DbIDx are  g iven  by  the  f i r s t  and  the th i rd  equal i t i es  in 
(7.244) and 

T h e  in t eg ra l  is aga in  evaluated us ing  the  four th  equation in  (7.224). As 
before,  t he  coef f ic ien ts  at are g iven  by the  f i r s t  fou r  equal i t i es  in (7.271) and 
the  coef f ic ien ts  6, a re  

60=0, 61=0. b * = - k i .  
6,=w;(l +k*)? (7 289) 
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Thus ,  

Eqs. 1 7 . 2 8 6 ~ ,  (7.290) toge ther  with the  f i r s t  and the  th i rd  equation in 
t 7 . 2 4 4 )  give the d i sFe r s ion  Dark f o r  error equat ions  (7.262) u i t h  a r b i t r a r y  
c o r r e c t i o n  coef f ic ien ts  k,, k,. k. Simpl i f ica t ions  as  in (7 .279)  lead  to the 
approx ima te  r e l a t ion  

(7.29 1 ) 

Compar i son  of (7.291) with (7.279) shows  that a c c e l e r o m e t e r  and  g y r o  
errors m a y  g ive  l a r g e r  d i s p e r s i o n s  of 6x,  in  the  c a s e  of Eqs.  (7.261),  
tvhtlreas Doppler e r r o r s  c o n v e r s e l y  m a y  lead  to l a r g e r  d i s p e r s i o n s  in the  
case of Eqs. (7.260).  

It now r e m a i n s  t o  ana lyze  the error  equat ions  (7.262). 
Xote tha t  the  t h i r d  equat ion  i n  (7.262) is ana logous  to  the  th i rd  equation i n  

(7.260) and  in  (7.261), and  the prev ious  r e s u l t s  a r e  t h e r e f o r e  appl icable .  
\Ve thus  only h a v i  to c o n s i d e r  the  first, the  second,  the  fourth,  and  the  

s ix th  equation in (7.262).  
o r ien ta t ion  errors t 4 y  and the d i s p e r s i o n  Lhr, of the  posit ion errors "w2. T h e  
coef f ic ien ts  k t .  k,. k c a n  a lways  be c h o s e n  so that  the  c h a r a c t e r i s t i c  equat ion  
of (7 .262)  h a s  roo t s  with negative real p a r t s ,  so that De:! and D,lr2 will  be  
ca lcu la ted  us ing  (7  .-18). 

T h e y  should g ive  the  d i s p e r s i o n  f ) n , "  of the  

F i r s t  w e  c o n s i d e r  the d i s p e r s i o n  DHLy,  which c a n  b e  w r i t t e n  as the  s u m  

T h e  t e r m s  of t h i s  s u m  are de te rmined  in  a c c o r d a n c e  with the  f i r s t ,  
second,  and  four th  equat ions  in  (7.262):  

w h e r e  

(7.293) 

(7.294) 
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The integrals  in (7.293) are evaluated using the representat ion (7.222) and 
the las t  equality in  (7.224). F o r  the f i r s t  of these integrals  we thus have 

where  

(7.2 96) 

T o  evaluate the second integral  in  (7.293), aDAnx on the right in (7.295) 
should be replaced with ~ D A v , ~ ,  and in  the f i r s t  four coefficients a, in  (7.296) 
u is replaced with y . The coefficients 6, are respect ively taken in the f o r m  

(7.297) 

Finally, to evaluate the third integral  in (7.279), we should in se r t  P f l b m y  

for  -+ on the right in  (7.295) and replace a with p in  the coefficients ai. 

The  coefficients b, are given by the equalit ies 

QDA“ 

bo=O. b ! = 1 ,  b>=-kkI. bJ = 0. (7  2 9 8 )  

It i s  The dispers ion Dbx. can  be calculated along the same l ines  as De,,. 
written as the s u m  

D6+, = D t Z  + D;? + D t T .  (7.299) 

To 
obtain the f i r s t  t e rm,  r2 is omitted f rom the right-hand s ide  of Eqs.  (7.295) 
and the coefficients a,  are taken f r o m  (7.296). 

Each of the t e r m s  in  this  sum again can be calculated using (7.295). 

The  coefficients b, are given 
by 

bo=O. b ,=O,  b2=-1 ,  b3=kz .  (7.300) 

In calculating the second t e r m  in (7.299), r2 is again omitted f rom the 

In the coefficients a , ,  a is s imi l a r ly  replaced with y a  

right-hand s ide of Eq. (7.295) ( i t  is taken equal to unity), and “Dan,  is 
replaced with yD&vDx.  
whereas  the coefficients bt are given by 

bo = 0, b, = 0, b, = - k:. b, = (u:k2 + k,k,)*. (7.301) 
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a D J n r  
Finally, in evaluating the third t e r m  in (7.299), r- in (7.295) is 

replaced by DA.,,"r2p# 1.1 in the coefficients ai is replaced with p ,  and the 
coefficients bi a r e  taken f rom 

b,,=O. b,=O. 6 ,=0 .  b,=o:. (7.302) 

Let us  compare  the dispers ions De and DsX, obtained fo r  the case(7.262) 

More precisely,  let u s  compare the dependence of 

I Y  

f rom (7.292), (7.299) with the corresponding dispers ions fo r  the c a s e  of 
Eqs.  (7.260) and (7.261). 
these dispers ions on the correct ion coefficients k , ,  k2 ,  k .  However, before 
we can  make this comparison, we should ag ree  on s o m e  c r i t e r ion  for  the 
comparison of the e r r o r s .  
e r r o r s  for  Eqs.  (7.260) and (7.261) the procedure was meaningful s ince the 
homogeneous equations corresponding to (7.260) and (7  2 6 1 )  w e r e  identical, 
and the comparison was therefore  c a r r i e d  out for  equal values of the c o r r e c -  
tion coefficients. The  homogeneous equations (7.262), on the other  hand, 
a r e  different f rom the homogeneous equations (7.260) and (7.261), and 
therefore we cannot confine the comparison to steady-state dispersions: the 
variation of the dynamic propert ies  of the homogeneous sys t em fo r  different 
choice of the correct ion coefficients should also be considered. 

Let the correct ion coefficients k,. kl, k for Eqs.  (7.262) be designated 
C,, k:, k ,  to distinguish them from the corresponding coefficients of Eqs.  
(7.260), (7.261). 
writ ten in the form 

Indeed, in comparing the dispers ions of the 

r t t  

The character is t ic  equation (6.171)  of Eqs.  (7.262) i s  

p ' - t ( k ;  f k J p'+ [ ~ b ( l  + kl,) + k ; k ]  p +otk '  = O .  

Let p ; .  p ; ,  p ;  be the roots  of this equation. 

equations: 
The cha rac t e r i s t i c  equation of Eqs.  (7.260) o r  (7.261) sepa ra t e s  into two 

p - i k , p  +oi(l t k 2 )  = 0. p + k  = 0. 

The roots  of these equations a r e  

We now choose the correct ion coefficients k' .  k:. k ;  f o r  the case of e r r o r  
equations (7.262) s o  that the cha rac t e r i s t i c  equation (7.289) has  the roo t s  

Th i s  can be accomplished, say,  by taking 
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This  choice of the coefficients k‘, ki. k; e n s u r e s  equal damping in (7.260)- 
(7.262), so  that f r o m  the point of view of damping the s y s t e m s  are equivalent 
to a degree.‘: Comparison of dispers ions is thus again meaningful. 

$7.4. DYNAMICS OF A PHASE ASTROCORRECTION 
SYSTEM WITH RANDOM ERRORS 

In J6.4 we have considered the operation o f a  phase astrocorrect ion 
sys t em near  the equilibrium. 
l i nea r  equations (6.139) with variable coefficients which under conditions 
(6.142) were  reduced by substitution of var iables  (6.141) to l inear  equations 
(6.145) with constant coefficients. 
w e r e  derived in the fo rm of inequalities (6.148). 

In (6.145) fi is the noise or e r r o r  signal.  
nate (e.g., the sca t t e red  so la r  radiation in  the atmosphere) or random 
functions of t ime. 
in  a s t roco r rec t ion  s y s t e m s  is sma l l  if the diameter  of the telescope objective 
is small, these s y s t e m s  have to function at  a high random noise level, which 
markedly exceeds the effective signal level. 
contributed by the photocell. 
and mus t  not be ignored when choosing the astrocorrect ion pa rame te r s .  

system, retaining only the noise function f 2 ( f )  on the right.  
this  is a s ta t ionary centered random function of t ime which corresponds to 
a delta-correlated p rocess  (white noise). 
given by 

The  problem was  reduced to a sys t em of 

I 
I The stabil i ty conditions of these equations 

Noises  may  be ei ther  determi-  

Since the luminous flux of the s t a r s  hitting the photocell 

The main noise component is 
Th i s  is a point of considerable significance 

Consider Eqs.  (6.145) which descr ibe the operation of an  astrocorrect ion 
We a s s u m e  that 

Let the correlat ion function be 

Kf,  (7, 7’) = 2rr8 (7 - T’), (7.303) 

where 8 is the constant spec t r a l  density. 
To simplify the fur ther  treatment,  we take 

a=? 2 ’  v=o.  

Eqs.  (6.145) are then writ ten in the fo rm 

I 

(7.304) 

I a - a b = O .  

b + oa - kV = 0. 

The cha rac t e r i s t i c  equation (6.146) of the sys t em in the c a s e  (7.304) takes 
the f o r m  

A ( p )  = p4 + 2&p3 + 2w2p2 + 2 b 3 p  + o3 (a - 2n), (7.306) 

* The systems of course are not entirely equivalent, since the third root of the characteristic equation is 
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i rhere  

and the s tab i l i ty  conditions (6.148) a r e  reduced to the inequalit ies 

t o  > 0, 0 - 2n > 0. (7.308) 

Let u s  ca lcu la te  the s teady-s ta te  d i spe r s ions  D, and Db of the var iab les  
a and b .  In acco rdance  with Eq. (7.48),  Eqs .  (7.305), and the equality 
S ,  I W I  = s", w e  have 

I 
(7.309) 

where  _\cjO) i s  the value of the cha rac t e r i s t i c  de te rminant  (7.306) fo r  p = j!?.  

and then apply the fourth equality in (7.224). 
To eva lua te  the in t eg ra l s  in (7.309), we wr i t e  them in the f o r m  (7.222) 

For  the f i r s t  in tegra l  in (7.309) 

(7 .3  10) 

the coefficients ai fo r  the second in tegra l  a r e  obviously the s a m e ,  and the 
coefficients bi are given by 

bo = 0. b, = 0, b, = - 4n's'Jtl. 4 ;  = 0.  (7.311) 

Using these  coeffici,?nts, we obtain for  the d i spe r s ions  D, and D, 

(7.312) 

T h e  va r i ab le s  in the s t a r t i ng  s e t  of equations,  (6.139), f r o m  which 
Eqs .  (7.305) have been derived, are 0, and By, and not a and b .  
w e  are p r i m a r i l y  concerned  with the d is tance  p f rom the c e n t e r  of the 
telescopic field to the star image .  
the angular  co r rec t ion  e r r o r .  Since 

However, 

It i s  the d is tance  p that c h a r a c t e r i z e s  

p-'= 8' X Y  + 0' = a'+b', 

the d i spe r s ions  (7.312) comple te ly  de t e rmine  the root mean  s q u a r e  error p.  

t = -C are readi ly  in te rFre ted .  

s m a l l  n i t  c a n  be ignor id .  
s p e c t r a l  density so of the function f l ( t ) .  F u r t h e r ,  for n = 0, we have De= 
= D,= 0. 
not c a u s e  any  deviation in the coord ina tes  a and b .  
s tab i l i ty  condition (7.308) is broken and the d i spe r s ions  of the deviations n 

(7.3 13) 

Eqs. (7.312) f o r  the d ispers ions  U, and Db of the deviations a and b for 

Db i s  en t i r e ly  independent of 0 ,  the dependence of D,, is weak and for 
T h i s  r e s u l t  i s  assoc ia ted  with the constant 

We have a n  o3en s y s t e m  in th i s  case and the noise function f' does  
For : = 0 o r  o = 2 n the 
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and b increase indefinitely with t ime. By increasing 6 ,  w e  reduce the 
dispersions.  This i s  a lso readily understandable if we r emember  that 1 1 5  
character izes  the effective passband of the resonance f i l ter .  
the passband in the case  of white noise, we naturally reduce 0, and D,. 

should increase 5 and lower n .  However, minimum random noise i s  not 
the only requirement to be satisfied by the correction system. Another 
important requirement is a high tracking rate ,  whereby the s t a r  image i s  
centered in the telescopic field start ing f rom some  initial position uO, bo, and 
fast damping of t ransients  in the system, which in the final analysis reduces 
to a proper  choice of the roots of the character is t ic  equation. 

equation. A s  w e  know, the roots  of the fourth-degree equation 

By decreasing 

It follows f rom (7.312) that to reduce the effect of random e r r o r s ,  we 

Consider the character is t ic  equation A @ )  = 0 .  This  is a fourth-degree 

P"aa,PJ+a,P2+a,F+u,=O (7.3 14) 

coincide with the roots  of two quadratic equations 

where 

and y is some r e a l  root of the cubic equation 

8y3-4a2y2+(2u,u3-8u4)y+u4(4u2-03=0.  (7.3 17) 

In our  case,  a fairly accurate  and simple approximate expression can  be 
obtained for  the r e a l  root of Eq. (7.317), so  that the roots  of Eqs.  (7.315) 
can  be found for  the ent i re  relevant range of the coefficients of the charac-  
ter is t ic  equation (7.314). 

Inserting the coefficients f rom (7.306), (7.307) in  Eq. (7.317) w e  obtain 
the auxiliary cubic equation 

y"- w y  2 2  + o q 6 2 - 1 + g ] Y  + w 6 [ l -  

W e  will find i t s  solution fo r  njo and 6 sma l l  compared to unity. Note 
that for  5 = n =  0 the left-hand side of Eq. (7.318) can  be factored and the 
equation takes the fo rm 

(Y - o 2 ) L  (Y + 02, = 0. 

A s  a f i r s t  approximation to the solution of Eq. (7.318) we take the root 

(7.3 1 9) 

y=-o' (7.320) 

of Eq. (7.319). 
inadvisable to use them as the f i r s t  approximation, since the introduction of 

Note that although the roots  y 2 , 3 = d  are also real ,  i t  is 
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a multiple root  g r e a t l y  enhances  the  difficult ies of the  s u c c e s s i v e  approxi -  
mation techniques .  
applying heit ton ' s  method, we readiIj-  find the next approximat ion  i n  the  
fo r r n  

Using ( 7 . 3 2 0 )  as the f i r s t  approximat ion  root  and  

?'r - ,.,- < 3n (7.321) 

F r o m  (7.316) we find 

and  the so lu t ion  of the  quadra t ic  equat ions  (7.315) g i v e s  the  following fou r  
roots of the  c h a r a c t e r i s t i c  equat ion  (7.314) of sys t en i  (7.305):  

T h e s e  roo t s ,  a s  we see, are  f a i r l y  a c c u r a t e  at l ea s t  for rz  <0/4 ,  

The r e a l  p a r t s  of a l l  the roots in (7 .323)  a r e  negative,  being equal  to 
- .; 0.1 - 0 . 5 .  

- : . d Z .  T h e  real par t  \ > f  the roots - b / 2  d e t e r m i n e s  in  the  f ina l  a n a l y s i s  the  
c.enit-*t,ing t in i t .  ( I <  tile t t ? l e s ropes .  C o m p a r i s o n  of the  r o o t s  (7.323) with the  
disperstons I), and On, (7.312),  shows that by inc reas ing  we s i m u l t a -  
n e o u s l y  r educe  both thc r andom no i se  and  the  te lescope  cen te r ing  t i m e .  
T h i s  s imul tane i ty ,  h o x e v e r ,  i s  obse rved  only for s m a l l  ;. 

For a n  a r b i t r a r y  :: and bounded n ,  the cubic  equation (7 .318)  h a s  the  root 

(7.324) 

For s m a l l  n and  5 .  t h i s  roo t  i s  r ead i ly  s e e n  to take  on the  value (7.321).  
In se r t ing  the  root  (7.324) into (7.316),  we  find 

A ,  . = t - 4iG- 1 % $ 6 ~ 3 ~ ~ - 6 4 1 - 2 n ~ , ) ( ~ +  f 4 Y -  16). (7.325) 

k'or suf f ic ien t ly  large 5 t h i s  g i v e s  

At,.= z (2d-%), (7.326) 

and  the  aux i l i a ry  quadra t ic  equat ions  t h e r e f o r e  take  the  form 

t I x? + ?:wx + (02 - 2 n o  = 0, 

x ? l G x + o  2-0, - 
(7.327) 

Solving t h e s e  equat ions ,  we  obta in  the  r o o t s  of the  c h a r a c t e r i s t i c  equation 
of o u r  sys t em:  

(7.328) 
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;Ippenrlix I 

S C A T T E R E D  SOLAR RADIATION IN T H E  

ERRORS IN PHASE ASTROCORRECTION SI'STE.\IS* 
AT.1IOSPHERE A S  A N  EXA.IIPLE OF DETER.IIINATE 

Besides the luminous flux of the s t a r ,  the chopper in the phase indication 
system a l so  t r ansmi t s  background light, whose power i s  considerably higher 
than the s t a r  light powc'r. If the background illumination w e r e  uniform over  
t h e  ent i re  field of view of the telescope, i t  tvould be blocked by the resonance 
fi l ter  (see block diagram in Figure 6.7).  The background flux, however, is 
nonuniform; i t s  nonuniformity i s  thus modulated by the chopper and t r ans -  
mitted by the filter. 
the effective signal, considerable distortion resul ts  and the system may fail  
to function properly.  

systems:  it l imits  the field of view of the system, i.e., the value of for  
as t rocorrect ion.  

The background modulation signal can  also be reduced by using a more  
complex chopper. 
described in § 6.4 comprise** a single-cycle re t ic le  (Figure A. la) ,  a uni- 
fo rm re t i c l e  (FigureA.lbj ,  a semidisk ret ic le  (Figure A. IC),  a dual-cycle 
reticle,  i. e., a combination of two halves of uniform ret ic les  with different 
cvcles (Figure A. Id). 

However, complex choppers a l so  attenuate the effective signal. They 
force u s  to work with seve ra l  harmonics  of the chopper frequency and thus 
complicate the photocell output channel; in some  c a s e s  ( a s  with a uniform 
reticle,  sav) ,  scanning is inevitable. It is thus absolutely essent ia l to  c a r r y  
out a theoretical  analy,;is of the signal amplitude and background modulation 
amplitude a t  the working frequency a s  a function of chopper pa rame te r s  and 
the diameter  of the fie'ld of view. 
important s ince direct  experiments  are highly delicate and complex, and 
their  r e su l t s  a r e  not a'lways reliable.  

A s  an example of a determinate background noise we will consider the 
scat tered s o l a r  light in the atmosphere.  
interferes  with the proper operation of the phase system in daytime 
observation of s t a r s  inside the Ea r th ' s  a tmosphere.  The method applied 
to the analysis  of this l ac to r  and some  of the resul ts  can be readily extended 
to other determinate noise factors,  including the effect of the nonideal 
telescope optics. 

If the background modulation signal is comparable with 

Background modulation i s  one of the principal shortcomings of chopper 

Further  developments of the semic i r cu la r  chopping disk 

The theoretical  analysis is especially 

The scat tered light great ly  

4 n d  r e e  v, v.D. 
light i n d x a t i o n  systems. - Izvestiya AN 9S'3R, technical cybernetics, N o .  3 .  1x63. 
optimal parameters of light indication systems. - [bid.. No.4. 1'363. 

Transmission of the  useful signal and background noise through the reticles of 
Determination of 

** A r o y a n ,  G.F. Technical Spatial  Filtermg. - Proceedings d i  the IRE. No.'>. 1959. 
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a 

C 

FIGURE A . l .  

b 

d 

F i r s t  let u s  consider the transmission of the effective signal and the 

The incident luminous flux, a s  we have mentioned, is the sum of th 
background signal through various reticles.  

flux and background flux. 
telescope optics i s  ideal, the effective luminoils f lux  Po reaching the photo- 
cel l  through a chopper (of the type shown in Figure A.1) rotating with angular 

frequency o i s  a periodic function of time with period T < g .  For 0 < t Q,, the 

transmitted flux can be written in the form 

If the star i s  regarded as a point source and the 

2rr 

n - l  

j - 0  

He’re p i s  a proportionality coefficient dependent on the brightness of the 
star, ti i s  the number of transparent wedges in t h e  reticle, r! and T,+, 
a r e  the angles corresponding to the beginning and the end of the j - th  t rans-  
nnrent wedge. and the function I (TJo) is defined as follows: r -- 

1 (J= 1: 
To  determine the working frequencies, the function P , ( t )  shoi 

Let the background brightnecs be 
expanded in a Fourier  se r ies .  

where r and ‘c a r e  the polar coordinates of a general  direction inside 
solid angle of the field of view; r i s  reckoned from the telescope axis and 
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the zero-point of the angles  T c a n  be  chosen  f r o m  cons idera t ion  of the f o r m  
of the function 5 .  

T h e  background flux through the chopper  is then given by 

. -  
I - "  ',! . T ,  t, 

Inside the field of view the  background b r igh tness  B is a periodic function 
P , ( t j  i s  t he re fo re  a l s o  periodic in t with a per iod  equal 
T h e  de termina t ion  of the background s igna l  ampl i tudes  

of T with per iod  2.7. 
to o r  l e s s  than 2n.'o. 
fo r  given 5 ( r .  TI thus a l s o  r e d u c e s  to ca lcu la t ion  of the F o u r i e r  expansion 

coefficients of the funclion P,c t )  in the in te rva l  (0, $) corresponding  to the 

working f requencies ,  i .e.,  the F o u r i e r  f requencies  of the effective s igna l  
& , ( t i .  Express ing  the F o u r i e r  coefficients of P , i t )  in t e r m s  of the chopper  
p a r a m e t e r s  and the angle  of view, we obtain the sought dependence. 

Note that in mos t  cases 5 i s  not given a s  a function of r and T . 
Commonly the background br ightness  B i s  defined as a function of the 

angles  z and cf between the te lescope  axis and s o m e  two fixed d i r ec t ions .  
In observa t ions  of star.; aga ins t  the background of s c a t t e r e d  sunlight, z and 

zenith and the Sun. 
a r e  the ang le s  between the  d i rec t ion  to the s t a r  and the d i r ec t ions  to the 

T h e  F o u r i e r  expansion of the  effective s igna l  is wr i t ten  in the f o r m  

To ca lcu la te  the coefficients of (1.5), we wi l l  u s e  Eqs. (6 .1  1 1 )  i n se r t ing  f o r  
P, the function P,, from E q s .  (1.1) and (1.2). 

F o r  a s ing le-cyc le  re t ic le ,  we have 

(1.6) On ,) = p:, 1 a! = L  sinkr,,. "=--$(I - C O ~ R T , ~ ) .  nk 

where  T~ i s  the angu la r  width of the  cyc le .  
For a s e m i d i s k  T ~ = z ,  s o  that 

F o r  a uni form r e t i c l e  with even n 

and thus  
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a 0 - E .  
0 -  2 

1- I 

ut)-* c o s ( 4 j + 1 ) $ s i n g ,  
k- Rn 

1 - 0  "- 1 

b i = g  s i n ( 4 / + 1 ) g s i n g .  
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(1.10) 

(I. 11) 

(1.12) 

(1.13) 

(1.14) 



I - - - I  

Fur the r  simplifications a r e  based on the equalities:' 

(1.14) 

(I. 15) 

For an odd k = 2 q +  1, we thus have 

(1.16) 

For a n  even k = 2q ,  Eqs. (1.15) vanish for  a l l  q except 

q = c 2 (2s + 1). (1.17) 

0 For these q .  Eq. (1.15) has the form which eventually gives 

(1.18) 

From (1.16) and (1.18), using (1.9)-(1.11), (1.13), (1.14), w e  obtain 

(1.20) 

R;; .? h i k, 1.M. and 1.S.G ra  d s  h t  e 1 n. Tablitsy integralov, summ, ryadov i proizvedenii (Tables of 
Integrals, Sums, Series and Products). - Gostekhizdat. 1981. 
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(1.21) 

P 6: @ * + I ) =  m. 
We can now write the Fourier expansions of Po in explicit form: 
for a single-cycle reticle 

m 

p61) I E 2n + l! n (“0 k cos (+ut + 1- sin Rot) ; (1.22) 
k=L 

for a semicircular chopping disk 

(1.23) 

(1.24) 

(1.25) 

- t g w ]  cos(2q-k I)ot +sin n(2q+  1)otf sin m ( 2 q  + 1) u t )  . (1.26) 

The working frequencies a r e  a l l  the frequencies contained in the spectrum 

W e  should preferably use those frequencies which car ry  most of the 
of the effective signal transmitted by the chopper. 

energy of the transmitted signal reaching the photocell and whose amplitudes 
a re  fairly large relative to the background modulation amplitudes at the 
same frequencies. 

Let us now find the background modulation amplitudes at  the working 
frequencies. 

sponding Fourier coefficients of the function P l ( t )  over the interval (0, 

expansion of the function B ( r .  r ) ,  which is periodic in T with a period 2n: 

A s  we have noted before, they a r e  determined by the corre-  

. 
The Fourier coefficients a r e  conveniently calculated using the Fourier 

d 

x -, 

B = a , + Z (  a, cos k r  + bk sin kr). (1.27) 
I-1 

2 
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where 

(1.28) 

(1.29) 
I 
1 

,, ?Ir - 
tr,) = J J 5 , r .  r) r cos k s  nr d r ,  

I ?  ,I 

f .'n 

i;, (ro) = 4 [ 5 ( r .  T) sin kT dr dt. 
,, 'I 

Integrating over  7 on the right in (I.29), we obtain fo r  the slit chopper 

For a uniform re t i c l e  

for  a semidisk ret ic le  

, = # I  

(1.30) 

(1.31) 

(1.32) 

(1.33) 

Similarly for  a dual-cvcle reticlc 
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Using (1.10)-(1.12), we can wri te  Eq. (1.32) for  Pi3) in the form 

_ _  : I  

x ( ~ t + ~ ~ ) + ~ z p  i] s in2q at+-- 4J-l-1 XI]. 
Using Eqs. (1.15), (1.16), (1.181, w e  readily rewri te  Eqs.  (1.33)-(1.35) i n  

(1.35) ( 2 n  
,=(I 

the fo rm 

(1.36) 

(1.37) 

W e  have thus found the Four i e r  expansions of the effective signal 

o_) 

P $" (t)  = 4 + x (ai cos Rot + 6: sin k a t )  
k-I 

and the background modulation signal 

(1.39) 

n, 

P 1" (t)  = + 2: (a* cos Rat + bk sin ka t )  
b-1 

(I.39a) 

for s eve ra l  character is t ic  re t ic les .  
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ire now requ i r e  the r a t io  of the effective s ignal  amplitude to the back- 
ground amplitude at  the working frequencies,  i.e., the r a t io  

(1.40) 

F r o m  (1.22)-(1.26) and (1.30)-(1.38) we see that for  ou r  r ad ia l  sl i t  
choppers  

(1.41) 

- 
Fvhere p i s  the s t a r  brightness,  ak and Tk are related to the F o u r i e r  coeffi- 
c ients  of the background br ightness  B ( r ,  T )  by the equalit ies 

(1.42) 
r, 

0 I 8, (ro) = J b, ( r )  r dr .  

We will now prove that Eq.  (1.41) i s  valid f o r  any general  ch0ppir.g 

F r o m  (1.1) and (1.2) 'ape have 
reticle. 

and f rom (1.28) we 0bta.n 

Clearly,  

(1.43) 

(1.44) 

Eq. (1.41) now follows direct ly  f rom (1.43) and (1.45) f o r  any gene ra l  
re t ic le .  

Th i s  expression, however, is not applicable to reticles where the  
t ransparent  and opaque segmen t s  are delimited by curved l ines  f rom the 
disk cen te r  to i t s  periphery,  i.e., when 

rCI = r j  ( r )  (1.46) 

(at l ea s t  fo r  a gene ra l  tackground luminance and  a r b i t r a r y  dis tance of the 
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luminous object f rom the center),  since for  these choppers 

n-1 

- 
k f [cos k ~ , + ~  (r)-cos k r / ( r ) ]  b ,  ( r )  r d r ,  

/ = o  0 (1.47) 

"-1 '. 
2 J [sin k ~ , + ~  (r)-s in k r j  ( r ) ]  b, ( r )  r d r .  + 
I = u  u 

In particular,  for  a general  "helical" chopper, when 

T~ ( r )  = T / + a  ( r ) .  (1.48) 

T, being the angle of the ordinary "nonhelical" chopping reticle,  we have 

I 
I' 

kZ [ (aR)? + (bk)?] = 

"-1 

4- (coskr,  

+ 
L O  

+ b, sin ka)r dr  

Now, f rom the Schwartz-Cauchy inequality 

[ / ( a h c o s  ka+bhs inku)rdr ] '+ [%(6 ,coska-  

- a n , s r n k a ) r d r 1 2 <  r r Z d r  r ( u i + b i ) d r ,  

1 (b, cos ka -ab sin ha) r d r  
0 

(1.49) 

J O *  0 

and s o  w e  have 

(1.50) 

(1.51) 

Note that in choppers with s l i ts  of the form T / = T ~ ( ~ ) ,  the coordinates T 

and r of the sighted objects a r e  not a s  readily separated a s  in a chopping 
reticle,  where T can be found independently of r .  

corresponding background brightness is'!< 
Consider the case  of scat tered so la r  radiation in the atmosphere.  The 

B = B ( z ~  ~ ) = A Y ~ ( Z ) Y , ( ~ ) .  (I.51a) 

* See K o n d  r a t ' e  v, K.Ya. Luchistaya energiya Solntsa (The Sun's Radiant Energy). - Gidrometeoizdat. 
1951. 
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kvhere A is a constant, 
to the zenith, 'i i s  the angle between the direct ions to the s t a r  and to thesun.  

The function ~ , ( z I  specifies the effect of the a i r  column in the direction of 
the telescope axis,  y2crrb i s  the scat ter ing diagram, which desc r ibes  the 
distribution of scat tered intensity f rom a unit a i r  m a s s  in a l l  di rect ions.  

function in the coordinates r and T. 

and the axis  5 pointing to the zenith, i.e., along the line f rom the E a r t h ' s  
center  0, to the object 's cu r ren t  position. 

z i s  the angle between the direct ions to the s t a r  and 

Before w e  can wri te  the Four i e r  expansion of €3, we have to expres s  this 

Consider the a x e s  0,;q; ( F i g u r e  A.2 )  with the origin a t  the E a r t h ' s  cen te r  

A general  direction p in this sys t em is defined by the longitude a ,  
reckoned in the plane ;O,q f rom the direction O,:, and the latitude 6 ,  
reckoned f rom the plane k0 ,q .  

and p . . ~ p .  I ,  respectively (without l o s s  of generali ty,  the angle uc may be 
taken equal to zero) .  

The  var iables  z and p entering Eq. (I.51a) are evidently expres sed  by 
the relat ions 

(1.52) 

The directions to the s t a r  and the Sun are  defined by the vectors  p,(u,. p,, 

cos 2 = p * j .  cosrp = p . p i .  

We introduce another  right orthogonal sys t em of coordinates O,t,lql~l 
( F i g u r e  A .  3)  with the origin at  0,, the ax i s  5, directed along the vector p,, 
and the ax i s  11, along the vector 5 /p, ( F i g u r e  A .  2 ) .  

reckoned in the plane ~,O,q,  f rom the direction O,t,,, and the colatitude r 
reckoned f rom the ax i s  O,:,. 

cone with a ver tex angle of 2r,, whose axis is along 0,. 

following ma t r ix  of direction cosines:  

-4 general  direct ior  p in the axes  Oi;,q,z, is determined by the longitude T 

The field of view of the telescopic sys t em in this case is the inter ior  of a 

The relat ive orientation of the axes  E. q. ; and :I. '1,. 6, is descr ibed by the 

(1.53) 

377 



APPENDIX I 

The  vector p in  the axes  O i ~ , q l ~ i  is descr ibed by the equality 

p = ~ l s ~ n r ~ ~ ~ ~ + ~ i s i n r s i n r + ~ , c o s r ,  (1.54) I 
where gL, qI, g1 are the unit vectors  of the corresponding axes .  

F r o m  Eqs .  (I.52), (1.54) and ma t r ix  (1.53) we have 

Hence 

cos z = - sin z, sin r cos T + c o s  z, cos r .  
(cos zc -cos z, cos q$ sin r cos 7 

sin z+ coscy = - 

-sin a, sin zc  sin r sin T + cosq, cos r .  
cos cp, - cos P* cos zc 

sinr,sinzc COSU, = * 

1 cos z = - sin z, sin r cos T + cos z, cos r ,  

cosrp = - sin 'p, sin r cos(r+e)  f c o s q .  cosr ,  

I sin a, sin zc sin P ,  

cos z c  - cos z* cos 'p. E = arctg 

(1.55) 

(1.56) 

If we take 

'p=cF,+txp. z=z,+tlz (1.57) 

and a s s u m e  &p. b z  and r to be sinall within the field of view, we readi ly  
obtain f rom (1.55) 

bz = r cos T, 

&p = r cos (T +e). 
(1.58) 

Eqs. (1.56) o r  (1.57) and (1.58) are the transformation relations f rom the 

We can now wri te  the F o u r i e r  expansion of B ( r ,  T) in  5 .  Assuming z to 
var iables  'p and z to the var iables  r and T. 

be fair ly  fa r  f r o m  z == $, so  that approximately 

(1.59) 1 Y l = c o s + '  

and taking fo r  y2(cp) as the f i r s t  approximation the Rayleigh scat ter ing 
diagram* 

y, = 1 + cos2cp. (1.60) 

we obtain B ( z .  cp) in  the fo rm 

B = A  c o s P  ( ~ + C O ~ * C p ) .  (1.61) 

Recalling Eqs. (1.56) and writ ing tg r =  s i n  r =  r ,  c o s  r = 1 (s ince r is small)  
we expand the function y, i n  powers of r tg z*. 

I * See the book mentioned in the footnote to p. 376. 
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Collecting the t e r m s ,  we get 

where 

(1.62) 

(1.63) 

To determine the F o u r i e r  coefficients of B i r ,  7 ) ,  w e  thus have to take the 
integrals 

Since c o s p %  is an even function, and c o s ” ~ s i n  T is odd, w e  have 

3 I cos’ T s i n  k T  dT = 0. T C O S ’ T  Sin 5 C O S  kTdT = 0. (1.65) 
u 

The  remaining two integrals  are evaluated without difficulty. As  a n  
example, let us  calculate 

2 5  T 

COS’T C O S  kT dT = 2 I COS’ T C O S  kT dr.  (1.66) 
J 3 

If p = 2m+ 1, fo r  even k = 2n we have 

and for odd k = 2 n  f 1, seeing that 

COS” (T + X) - COS2’+’ T. 

(1.67) 

(1.68) 
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(1.69) 

We can now use  the standard relation" 
n - 

( x f y - I )  COS (X - y) 7 COS"++* 7 dT. (1.70) 
R j 1 2x+y-1 -- 

F ( x *  Y) - u 

where F ( x ,  y) is the Euler  integral  of the first kind (beta function) 

F (x. y )  = 1 u*-I ( 1  - u)'-' du. 
I 

From (I.70), taking 

x = i n  + n f 2. y =  m - n + I ,  

we obtain 

(1.71) 

(1.72) 

7 
1 
- 

4rr 
4 j cos2m+lcos.(2n+ l ) r d r =  22m+2 

(2m +2) F ( m  + n  +2. m - n + 1) 
. 

1 

Seeing that for positive integers a and b 

-= 1 u ( ~ + b - I ) l ,  
F ( a .  6) (6-1)lal 

we finally obtain 

(1.75) 
0 t 

1.T 

r cos(2n + 1)r d.r = -E- - (Im +')I j CoS2m+l 
2zm ( m - n ) ! ( m + n + l ) !  

( m  > n, n > 0) .  

Similarly 

(1.76) 

7 2n 

C O P  7 cos 2nr d7 = 2 COS--' 7 cos (2n - 1) 7 d7 + 
0 

nr;! 
+ 2 C O P - *  r cos (2n + 1) r d7, 

0 

* See W h i t t a k e r ,  E. and G. W a t s o n .  A Course of hlodernAna1ysis.-Cambridge. 1927. 

(1.77) 

(1.73) 

(1.74) 

I 
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so that 

we 

i 
1 

(2m) I j COS-” T COS 2nT dT = 
0 

2‘”-1 ( m - n ) l ( m + n ) l  

( m  -> n ,  n 0). 

5 e e i  ng that 

also f ind 

0 

T sin T sin (2n + 1 )  r dr = 0; 

- 7 (2m + l ) ! ? ~  -- 
.,:,TI r I - ( m - ~ + l ~ ) ! ( m + n + I ) l  

( m > , n - l I ,  n>, I ) ;  

Us ing  (1.62), w e  f ind  the Fourier c o e f f i c i e n t s  of B < r ,  T): 

a. = 2a, ,  

a ,  = - a2r, 
b, = a3r. 

For n > l ,  Eqs. (I.75), (I.78), (1.81)* (1.82) g i v e  

(1.78) 

1.79) 

(1.80) 

(1.81) 

(1.82) 

(1.83) 

(1.84) 
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Eqs.  (1.84) can  be writ ten in a more  convenient fo rm by changing over  to  
a new index q = i + n - 1 .  Then 

(1.85) 

The series in (1.85) converge very rapidly for  sma l l  r ,  so that excellent 

Fesenkov's scat ter ing function* 
accuracy is ensured by retaining only the f i r s t  t e r m s .  

y2= 1 + a c o s ' p + 6 c o s 2 ~ + c ~ o s 3 ' p  (1.86) 

provides a bet ter  approximation to atmospheric scattering than Rayleigh's 
function (1.60). Using this B we obtain 

B=& - & r c o s r + i , r s i n T +  ; i4r2cos2r--n,r2cosrsinr + 
+ &r3 ( r  tg z,P+l  COS*^+^ T - &r3 )r: ( r  tg ZJ'~ cos2'+.' T + m m 

v-0 
a 

9=0 

+ I;,r3sin T ( r  tg Z , ) ? ~ C O S ~ ~ + ~  T - 
9 - 0  

Here  

- A  a,  =-(I + u coscp,+6  COS'^* + c cos3'pJ. 

& = L [ ( l  +acos'p, - + 6 c o s 2 ~ , + c ~ o s 3 ~ ~ ) t g ~ ~ +  
+ s i n ~ ~ c o s & ( u + 2 6 c o s ~ , + 3 c c o s 2 c p ~ ) ] ,  

- A  
a3= 

A 
a4 = 

cos I* 

cos E ,  

sin'p, sin & ( a  + 26 coscp, + 3c cos2'pJ, 

[( 1 + a ~ 0 s ~ .  + 6 cos2'p.+c cos%,) tg2 z.+ 

+sin'p~cosetgz~((a+26cos'p,+ 3ccos2'p,)+ + sin2'p, cos 2e (6 + 3c coscp,)l, 
a" - A [sincp, sin e tg z, ( a t 2 6  coscp,+3c cos2cpJ + 

+sin~'p,s in2~(6+3ccoscp,)] ,  
- A  u6=- [(l f a c o s c p ~ + 6 c o s 2 ~ , + ~ ~ o s 3 c p ~ ) t g 3 ~ , +  

+sin 'p, cos E fg2 z, (a + 26 COST, + 3c cos2'p,) f 
+ sin2 'p, cos 2~ tg z, (6 + 3c cos cp,) + 

- 

5 - cos 2, 

tg 2, 

+ sin"'p, cose ( c  cosz e - 3c sin2e)l. 
a",==& [sin'p,sin e tg~z,(a~2bcoscp,+3ccos2cp~,H- 

+sin2cp.sin2e tgz,(6+3ccos'pJ+ 
+ sin3q, sin& (3c cos2e - c sinle)]. 

(1.87) 

(1.88) 

* See the book mentioned in footnote to p. 316. 
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F o r  the Fourier  coefficients we  now have 

and for n > 1 

(1.89) 

(1.90) 

I 8-U 

If only the f i rs t  t e rms  a r e  retained in each ser ies ,  the amplitudes A , ,  
of the background modulation harmonics a re  written, using (I.42), in the 
form 

and for k > , 3  we have 

(1.91) 

(1.92) 

Eqs. (I.41)> (I.88), (1.91), (1.92) lead to a number of qualitative and quanti- 
tative conclusions concerning the choice of the parameters of the chopping 
reticle in systems where s t a r s  a r e  detected against the background of 
scattered solar radiation in the atmosphere. 
making some comparative estimates. 

(in luxes) produced by a zero magnitude s ta r ,  and the coefficient A in (1.5laj 
gives the brightness in stilbs, we have from (1.41) 

These conclusions even permit 

If m;;t i s  the s te l lar  magnitude of the sighted s tar ,  E,, is the illumination 

(1.93) 

Taking some i.O for the ratio of the s t a r  signal to the background modula- 
tion amplitude at the working frequency, w e  find 

(1.94) 

This inequality, together with Eqs. (1.91), (I.92), (I.88), establishes a relation 
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among the following quantities: 
A - the background brightness in the direction of the telescope axis, 

v*, 2,- the working range of angles relative to the directions to the Sun and 
the zenith, 

specified signal-to-background ratio, 
m$ - the minimum stel lar  magnitude at which the system ensures the 

h' - the signal-to-background ratio, 
ro - the radius of the field of view, 
k - the working harmonic index (i.e., the index of the f i rs t  harmonic 

which ensures the required signal-to-background ratio); in the final 
analysis it determines the number of reticle cycles. 

If, say, A.  v*, z,, m:, Lo and ro a r e  given, we can find the minimum number 

The choice of the minimum number of wedges is  a highly important 
of cycles. 

problem, since it determines the diameter of the central dead region in the 
chopper field ( remember that the s t a r  image in the focal plane of the optical 
system is a disk of finite size) and thus largely affects the static and the 
dynamic e r r o r s  of the system. 

operate at  a high noise level. 
On the other hand, the s t a r  image gradually moves across  the chopper, so 
that the working frequency i s  affected (the chopper Doppler effect). If v i s  
the image drift velocity at  right angles to the chopper radius, and r ,  is the 
distance of the s t a r  image from the chopper center, the working frequency 
will change by A ( n o )  I: nvlr,. This frequencydrift, proportional to the number 
of reticle cycles n ,  inevitably sets a limit to the minimum filter passband 
that can be used. 

We see from Eqs.  (I.88), (1.91), (1.92) that the maximum values of A, a r e  
attained for minimum q., maximum z*, and e = 0. 

The last  condition, a s  we see  from (I.55), (I.56), signifies that the direc- 
tions to the s tar ,  the Sun, and the zenith a r e  coplanar. 

F o r  E = 0 

It should be further remembered that normally s t a r  indication systems 
Therefore narrow-band fi l ters must be used. 

(1.95) - _ -  
u1= u5 = a7 = 0 

so that 

- 4 (R +2) 

(1.96) 

! .3  . lo-*, Consider some numerical estimates.  Let Lo= 10, m t = 3 ,  E o = ;  
ro=O,Ol, z,,<5n/12, q,>x/9, Ar0.05 ,  ~10.05, b Z l . 1 ,  c - 0 . 7 .  Then 
(;? = 2.1, i4 = 8, i6= 30, tg z,= 3.7. Inserting in (I.96), we get I 

A, = 7 . A ~ =  io-*. (1.97) 

For  k >  3 

(0,019)*+* 
R+2 * 

A, = 0.33 (1.98) 
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Figure A . 4  plots -log Ab a s  a function of k ,  

the pa rame te r s  gives 
The right-hand s ide of inequality (1.94) for the above numerical  values of 

(1.99) 

Yvlinus t h e  logarithm of this number is also marked in Figure A.4 . ,  

I 1 I I 1 I I 
7 2 3 4 5 6 7 B X  

FIGlrRE 4 4 

iC'e see f rom the diagram that fifth and higher harmonics can  be used as 

Harmonics I through 4 should ei ther  be fi l tered out by the chopper or 

A s  another example, let us  consider the dependence of the lowest working 

From (1 .96)  we s e e  that for  

t h e  Lvorking frequencies in this ca se .  

suppressed in the photocell output channel. 

frequency on the angle of view of the system. 

r: = !-% (1.1 00) 

A i  i s  related to A, and p for  a l l  k by the equality 

A; = pk-'A*. (1.101) 

The plot of -log A ; ( k )  is therefore displaced by ( k +  2)  log p in the ver t ical  
direction in relation to the plot of -log A,(k). 

The dashed line in F igu re  A.4 gives -log -1: for p =  2 and p =  'I2, i.e., for  
r q =  0.02 and r, ,= 0.005. 
factor of 2 in e i ther  direction involves a simultaneous change of unity in the 
working frequency. 

Note that a s  2.0 i s  changed by a factor of 10, the line 

We see f rom the diagram that changing ro by a 

(1.102) 

i s  displaced by a unit interval along the ax i s  -log A,. 
Let us  der ive some  energy est imates .  
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The total energy T of al l  the modulation harmonics is givenby Parseval 's  
theorem" in the form 

(1.1 03) 

A similar  relation holds for the background harmonics. 
For any reticle 

T = 2p2a ( 1  -a), (1.104) 

(I. 1 05) 

where a is the ratio of the transparent to the filled area,  i.e., 

n-1 
1 

a = ?;; (7/+1 - T,). 
t - 0  

T is  maximum for a =1/2. 
A uniform reticle, a chopping semidisk, and a dual-cycle reticle have 

a = 112, and the total energy of the modulated signal reaches i ts  maximum 
value 

T = 0 . 5 ~ ~ .  (1.1 06) 

For a semidisk reticIe a =  0.25 and thus 

T = 0.375~~. (1.107) 

For a single-cycle chopper a = T~ /an and 

T = k % ( l + - ) .  (1.108) 

If the working frequencies comprise 1 harmonics starting with the m -th 

I 

For example, if three harmonics are used start ing with the fifth, i.e., 
the frequencies 5w, 6w,  7 w ,  we have for a reticle with z0 = n /6  

T I  = 0.034~~. (I. 1 10) 

The total energy of this sl i t  by (1.108) is - 0.15~'. 
For a semidisk (with working frequencies 50 and 60) we find 

'f, = 0 . 0 2 4 ~ ~ .  (J.111) 

For a six-cycle semidisk reticle ( a  = 6 )  we have at the working 
frequencies 50, 60, 70 

See T o l s t o v ,  G.P. Ryady Fur'e (Fourier Series). - Gmekhizdat. 1951. 

(1.112) 



Finally, for  a s ix-cycle  uniform reticle ( n  = 6 )  and a single harmonic 
ii <,) have 

Note that es t imate  (I.114) is independent of n ,  and est imates  ( I . l l 2 j  and 
(1.113) for n>,  5 a r e  fa i r ly  insensitive to n and m ,  since for large n w e  
have t h e  asymptotic approximatlons 

in place of (1.112) and 

' 176' T ,  = $( 2 + m ) a 0 . 3 9 5 p ?  

(1.115) 

(I. 116) 

i n  place of (1.113). 

(1.116) a r e  independent of n and m .  

semidisk at frequencies k > 5  a r e  highly disadvantageous from the point of 
v i e x  of energy. 

of the energy of t h e  modulated signal, even if only a single harmonic is used 
(0.4~) compared to the theoretical  maximum of 0 . 5 ~ ~ ) ) .  

The semidisk reticle,  a s  we see from (I. 112), (I .  115), passes  a t  the 
frequencies ( n -  1) (0. nw, ( n +  1) m l e s s  than half the energy passed by the 
uniform ret ic le  at :he single frequency IZU) and 0.75 of the energy passed by 
the semidisk.  

Comparison of es t imates  (1.113)s (1.116) with (1.114) shows that a t  the 
frequencies ( n  - 1) o. nw.  ( m - 1) (L) = ( n +  1) (11, m o ,  ( m  + I )  o the dual-cycle 
reticle pas ses  virtually the s a m e  energy a s  the uniform reticle at the single 
frequency nm. 

Note that t h e  feasibility of the energy relations above is determined by 
the ent i re  signal reduction channel. 
choppers should therefore take into consideration t h e  signal reduction 
circui ts  and the high level of extraneous noise in the sys t em.  

t h e  s e r i e s  (1.90) af ter  t3e f i r s t  t e r m .  

Therefore,  in practice,  for  n >5, est imates  (1.112), (1.1 13) or (1.115), 

The aboye numerical  es t imates  show that the single-cycle reticle and the 

-4 uniform reticle,  01 the other  hand, ensu res  a nearly perfect utilization 

The final energy est imates  of various 

In conclusion, let us  es t imate  the e r r o r  associated with the truncation of 

Consider the sum entering the expression (1.90) for u2*-, : 

(1.1 17) 
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W r i t i n g  for  the  s u m  o n  the  left, w e  see tha t  

y - (-1 My < I ,  (1.118) 

w h e r e  

~ 2 n  + 2i+2) (2n +2i+ 3) = 2n + 3, (1.119) (it- 1) ( In  + i + 3  M = max 

F r o m  (1.118), (1.119) w e  h a v e  

( I .  120)  

F o r  n = 12,  r = 0.02, tg  z,= 4 w e  h a v e  

(1.121 

(1.122 

E r r o r  e s t i m a t e s  for p a r t i a l  s u m s  conta in ing  two a n d  more t e r m s  a re  
obta ined  a long  the  same l i n e s .  
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.-lSD A DOPPLER 17Ei.0CITE' JIETER* 

(?onsider the navigation of an object along a t ra jectory using a directional 
gy ro  w i t h  latitude compensation at  the s tar t ing point. 
object actually reaches t h e  end point of the programmed trajectory,  the 
directional gyro is initially deflected by a cer ta in  angle f rom the orthodromy 

T o  ensu re  that the 

passing through the s tar t ing and the terminal  point 
of the t ra jectory.  
comparing the integrated readings of the Doppler 
velocity m e t e r  with the calculated range. 

We will determine the initial pa rame te r s  of 
motion and est imate  s o m e  of the e r r o r s  of this 
navigation technique associated with inaccuracies  
in  the initial sett ing of the pa rame te r s .  - Let the object move a t  a constant distance H, 

14! f rom the Ea r th ' s  center :  i ts  velocity ~ ' ( t )  is a 

The equations of motion a r e  writ ten for  the 

The a r r i v a l  t ime i s  fixed by 

f +  

known function of t ime.  

schematic diagram of the directional gyro in a 
three-degrees-of-freedom gimbal.  The axis  of the 
ou te r  gimbal i s  vertical:  it f ixes the cour se  angle.  
The angular momentum vector H of the gyroscope 

FI ,  . I 'FE .\.i. 

@ 
l ies  in the plane of the horizon. The mutually perpendicular orientation of 
the two gimbals i s  ensvred by a special  f r a m e  correct ion arrangement  (not 
shown in the figure).  'The latitude e r r o r  of the gyro i s  compensated by a 
correct ing torque M ~ ,  ,ipplied to the inner gimbal axis .  

origin of this sys t em i s  at the Ea r th ' s  cen te r .  
Ea r th ' s  s p i n  vector m ,  and the axis  0: is the intersection line of the equator 
x i th  the plane of the G.reenwich meridian.  

fit, spinning together with the Ea r th  i s  descr ibed by spherical  coordinates: 
the longitude i. reckoned in the plane of the equator f rom the ax i s  0: and the 
latitude r& reckoned f rom the equatorial  plane. 

The coordinates of the s tar t ing and the terminal  point a r e  L,. q, and ;.>< +, 
re spec t i ve ly . 

A Darboux trihedron 0,xyz with i t s  axes  directed to the points of the 
compass i s  associated with the cu r ren t  position of the moving object.  
origin is at  the point 0, current ly  occupied by the object on the sphe re  s. 

[Le introduce a right orthogonal sys t em 0;lg fixed to the E a r t h .  The  
The axis  0; points along the 

The position of an object on the surface of a concentric sphe re  s of radius  

Its  

i'.D. - [z\ezti>d . \h 'S j . jP ,  te,.h. cyber., S c . 6 .  1967. 
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The axis  0 , y  i s  directed up along the geocentric vertical ,  and the axis  0 , w  
points north along the meridian.  

The mutual orientation of the axes 0;q; and 0,xy.z is described by the 
following ma t r ix  of direction cosines:  

X 1’ 2 

$ - s incpcos i  c o s ~ c o s k  -s ink 
q -s inqs in) .  cosrr5 ink cask 
5 c o s q  sin ‘p 0 .  

We introduce the co-moving axes O,.~,y,z, with the origin at  the point Ol. 
The axis  O,yl is directed up along the vertical ,  and the axis  O,xl points along 
the velocity vector o of the object.  
relative to O , X ~  is descr ibed by the following matrix:  

The orientation of the axes  O,x,y,z ,  

x .  Y l  2 1  

x cos@ 0 - s ing  

y o 1  0 
z sirlip 0 cos$>. 

W e  see f rom (11.2) that the positive angles ip a r e  reckoned f rom north to 

If the outer gimbal axis  is directed along the axis  Olyl ( o , ~ ) ,  the two gim- 
eas t  . 

bal axes meet  a t  the point 0,. Seeing that the projection of the absolute 
angular velocity of the axes  O , X , ~ , Z ,  on the axis  O,y, is 

w,., = ((0 +i) sincp - $. 

we write the equations of motion of the object and the directional gy ro  in the 

(11.3) 

the fo rm 

cp =-II_ cos$. i=s. 6 = (w +i.)sin’p - 2. M (11.4) 
RO H 

The initial conditions fo r  Eqs. (11.4) a r e  

In case  of continuous latitudinal compensation of the directional gyro,  w e  
have 

- M = w sin ‘p. (11.6) 
H 

and the equations of motion along the orthodromy take the fo rm 

(11.1) 

(11.2) 

(11.7) 

I The initial value 9 (0 )  i n  this  c a s e  is the angle To that the orthodromy through 
the s tar t ing (cp,, k,) and the terminal  (T?, k2) points of the t ra jectory makeswith 
the axis  0.x a t  the Doint (0,L,). so  that ... .,. 

sin ‘p2 - sin ‘pI cos So 
cos+o= C O S %  sins, ’ I (11.8) 
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w h e r e  So i s  the angle between the directions to the points 
t h e  orthodromy plane, given by 

?.,) and ( ( ( 2 .  i , )  in 

COS So= cosrg, cosp?  cosci.- - i.,) -+-sinq, s inq2 (11.9) 

In t h e  c a s e  under discussion, the latitudinal correct ion i s  applied only at  
the s tar t ing point, i .e., ,  

The equatinns of motion (11.4) thus take the fo rm 

(11.10) 

(11.11) 

The initial conditions f3r Eqs.  (11.11) are 

In (11.12)* 11, is defined by (11.8) and 311,~ should be determined from the 
condition that the t ra jectory passes  through the terminal  point, e.g., f rom 
the equality 

A (T2) = ).*. (11.13) 

If t I  is the t ime when condition (11.13) i s  satisfied, the angular range S, 
between the s tar t ing and the terminal  point along the t ra jectory i s  given by 
the integral  

(11.14) 

The angular range S, n,aturally may differ f rom the range S,j specified by 
Eq. (11.9). 

of the s tar t ing pa rame te r s  of motion, let u s  consider in some  detail  the 
simplifying assumption:; introduced in the derivation of Eqs.  (11.11). 

R,, concentric with the Ea r th  and shar ing i ts  axial  rotation. 
axis  was fur ther  assumed to be directed along the axis  O,y,  tOIy')> i .e.,  along 
the normal  to the surface of the sphe re  s, whereas in sys t ems  where the 
outer  gimbal axis i s  caged to a gyrovertical  with pendulum correct ion,  it 
slightly deviates f rom t h e  direction O,y,. 

with the lqngitudinal axis; the corresponding direction in the sys t em 0 , x y z  
was defined by the gyro output axis  J.'. In fact, however, the longitudinal 
axis  0 , x ;  may drift  frorri the direction O,s, through an angle 

Before proceeding with the solution of Eqs.  (11.11) and the determination 

The object w a s  assuined to move ove r  the surface of a sphe re  s of radius  
The outer gimbal 

I n  the derivation of E:qs.  (11.11) the velocity vector 'D was taken to coincide 

(11.15) 

This  drift  may be caused by t r ansve r se  wind, Coriolis forces ,  imperfect 
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geomet ry  of the object, and other fac tors .  
a Doppler velocity m e t e r  and i s  compensated by the guidance: s \ . s t t , n i ,  s o  t h a t  
in fact we have in Eqs .  (11.11) 

The dr i f t  angle I; is imeasiirc.d w i t h  

It is readily seen  that, under cer ta in  r e s t r i c t ions  on the angular range A , , ,  
the above simplifications do not lead to noticeable e r r o r s  in  the dc termina-  
tion of qn and h r 0 .  

In the calculation of t i , ,  and -\t,,, cosG can  be taken equal to unity and R,, 
can  be set equal, say,  to the maximum radius of c u r v a t ~ i t ~  of tile geoid. 
When the range  SI i s  measured ,  however, the E a r t h ' s  flattening should be 
taken into consideration, s ince  the Doppler velocity me te r  gives the projec- 
tion of the objec t ' s  velocity relative to the Ea r th  onto a plane tangent to the 
geoid. ::: 

integrating the longitudinal Doppler readings .  
For constant ti =-: i:, this sys t em can  be integrated, a t  l eas t  in quadra tures .  

Indeed, inser t ing  i. f rom the second equation in (11.11) in the third and 
dividing through the third equation by the f i r s t ,  we obtain the following 
relation between 11 and q : 

For fa i r ly  l a rge  I;, Eq. (11.16) should be taken into consideration when 
Let us  r e tu rn  to E q s .  (11.1 1 ) .  

This  is a l inear  differential  equation in s in  1 1 .  Its  solution is 

( 11.1 8 )  

q ( t )  is obtained f rom the equation I 

(11.19) 

where  s in  $ i s  defined by Eq. (11.18). 
Given ~ ( t ) ,  we find C ( t )  f r o m  (11.18), a n d f r o m t h e  second equation in (11.11) 

we get 

(11.2 0) 

The  application of the quadra tures  (11.19), (11.20) to the determination of 
the init ial  p a r a m e t e r s  of motion is not easy, however: f i r s t ,  the integrands 
are fa i r ly  complex and second, no immedia te  technique i s  available for  the i r  
generalization to the c a s e  of var iab le  a. 

We will  therefore  der ive  a n  approximate solution of Eqs. ( I I . l l ) ,  r e m  
ber ing  that the solutions of Eqs .  (11.11) a r e  c lose  to the solutions of Eqs. I 
(11.7). We will  thus cons ider  Eqs. (11.11) in a coordinate s y s t e m  fixed to the 
or thodromy through the points (cpl. A,), (qZ. &), which is a solution ofEqs.(II .7).  

The  axis O;, 
is d i rec ted  from the E a r t h ' s  cen te r  t o  the s t a r t i ng  point (cpI. &), the ax is  Oql I The orthodromic coordinates 0~,q16, are defined as follows. 

e m  - 

* see §5.2  (page 193). 
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is n o r m a l  t o  the  o r t h o d r o m y  p lane ,  a n d  t h e  a x i s  O;, l i e s  i n  the  o r t h o d r o m y  
plane,  point ing in t h e  d i r e c t i o n  of t h e  t e r m i n a l  point .  T h e  m u t u a l  o r i e n t a -  
t i o n  o f  the  a x e s  0;4 a n d  O:Ltll;l is d e s c r i b e d  by  the  fol lowing m a t r i x  of 
d i r e c t i o n  c o s i n e s :  

fl r l l  'I 

C l e a r l y ,  

T h e  o t h e r  p,,, are d e t e r m i n e d  f r o m  the e q u a l i t i e s  

(11.21) 

(11.22) 

(11.23) 

;vhr re  ;:. t i l  a r e  t h e  uni t  v e c t o r s  of the  axes O:,. Oil,, a n d  pi, pi are t h e  uni t  
v w t o r s  in the d i r e c t i o r s  f rom t h e  point  0 t o  the  s t a r t i n g  a n d  the  t e r m i n a l  
point , r e s p e c t i v e l y  . 

t ' r o m  (11.23) w e  have  

I P I ,  ==S, ~ c o s q ~ i o > i . ~ -  sosrr, c o s i . , c o ~ S , ~ ) =  

')in '1, cub  i . ,  c o s ~ l , ,  - sin %, sin$(,, 
I fi:: = - - ~ ~ u > ~ ~ ~ ~ i r ~ ; . ~ - c o s r ~ ~ s i i t ~ . ~  sosSu)= 

- _ -  
,111 s: 
-: I r t ~ } ,  \III i., i o j  $,,- i u s  i., sin$,,,  - - 

(11.24) 

T h e  pos i t ion  of the  o b j e c t  in  t h e  a x e s  0 ~ , q l ~ ,  i s  d e t e r m i n e d  by i t s  a n g u l a r  
r a n g e  S a long  the  o r t h o d r o m y  a n d  the  d i s t a n c e  p f r o m  t h e  o r t h o d r o m y :  t h e  
r a n g e  S is r e c k o n e d  f rc -m t h e  s t a r t i n g  point  of t h e  t r a j e c t o r y ;  pos i t ive  p a re  
taken  in t h e  d i r e c t i o n  f r o m  t h e  o r t h o d r o m y  to t h e  a x i s  011,. 

If i j  i s  t h e  uni t  v e c t o r  in  the d i r e c t i a n  to the  c u r r e n t  pos i t ion  of the  o b j e c t  
11n t h e  s p h r r e  E, i t s  d i r e c t i o n  c o s i n e s  

cos p sin S, sin 11. cos 11 cos S (11.2 5) 

in the  ~ X P S  O:li~,~l and tt-e d i r e c t i o n  c o s i n e s  

i~a ,+ ius i . .  i o s y ~ i n i . .  bin$ (11.26) 
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in the axes 0 ~ 4  a re  related, in virtue of matrix (11.21), by the equalities 

coscpccos?.=p,, cospsinS+p,,sinp+~,,cospco~S, 
cosrpsinh=p,, cospsin S + p n s i n p + ~ Z 3 ~ ~ ~ p c o ~ S .  

sin(p=p3, cos p s i n S + p 1 2 s i n 1 1 $ - 8 3 3 ~ ~ ~ p ~ ~ ~ S ,  

(11.27) i 
which express the coordinates i p  and I in te rms  of S and 1 1 .  

The equations of motion (11.11) in the axes ot,,~,:, take the form 

p = art)  sin 8.  
(11.28) 

(11.29) 

Inserting sin cp from (11.27), (11.24)> (11.22), we obtain 1 
3 = a ( t )  cos e 

cosp ' 1 
(11.3 0) I 

I 6 = - o (coscp, cos qo cos p sin S + 
+cos(p,sin ~~sinp+sincp,cospcosS-ssfncpl). 

I The initial conditions for Eqs.  (11.30) a re  

(11.31) 

The trajectory will pass through the terminal point (9,. I,)  if the e r r o r  
Bo = - is  determined from the condition 

CI(S0) = 0. (11.32) 

The angles p and 8 being small, we can replace Eqs. (11.30) by 

i S = a (t) ,  
6 =-6o(coscp,cos~-~sinS+sincp~ cosS-sincp,). 
;I = a ( t )  0. 

(11.33) 

Eqs.  (11.33), a s  is readily seen, can be integrated successively, one after I 
giving 

I 

s = J a ( t )  d t ,  

(11.34) 
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If we take 
t * ( t )  
R ,  

u(ti=---- fo r  t<tt,,  

a(ti=%=a,=const fort >t,, 
R* 

i n se r t ion  in the  f i r s t  equation in (11.34) g ives  

t 

s= I Q ( t ) d t  ( t Q t , ) ,  

s= ( u ( t ) d t + a o ( t - t * )  (t > t J  

0 I 
I I 4 

From the second equality in (11.34) w e  have f o r  t < t ,  

For t > t, we ge t  

8 = - o sin q I  !f (,COS i o  ( t )  di) d t  - 
0 

t '  1 \ 

where  

Finally,  f r o m  the th:.rd equality in (11.34), we ge t  f o r  t<t. 

(11.35) 

(11.3 6) 

(11.3 7) 

(11.38) 

(11.39) 

(11.40) 

(11.41) 
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Here  

We can now find Bo. Suppose that a t  the t ime of a r r i v a l  f, at  the terminal  
point, when we should have 

V ( t , )  = 0. (11.43) 

the following inequality is satisfied: 

t > f,. (11.44) 

Since 
s (f,) = so. (11.45) 

we have 

t ,  - t ,  = s,--s, f - so--s* + f , .  (11.46) 
a. ' l - 7  

Inserting t = t ,  in (11.41), w e  obtain a f t e r  some simplifications 

+ - o cos 'pI cos +o sin S, - sin So 
O- so [ a, 

+TA a0 

+ (4; + *)(SO - S') + P;] + 
+ (4: - *) (So - S.,+ 0 stn 'PI cos s, - cos so 

 SO)-- 1;;;;( ' s 0 -S*)'-Pj+P;]. 

Let us est imate  the e r r o r s  associated with the substitution of Eqs .  (11.33) 

Subtracting Eqs .  (11.33) f rom Eqs .  (11.30)> we obtain for the differences 

(11.47) 

fo r  Eqs. (11.30). 

Ap, u, A0 between the two s e t s  of solutions 

AS=ao( l  -=), 
A6 = o AS(coscp, cosvo cosS +sincp, sin S) - 
-a( 1 - cos p)(cosrp, cos go sin S-sinq, cosS) - 

- - o s i n p c ~ s r p , s i n ~ ~ , , ,  

A; = u (e - sin 8 +he). 

(11.48) 

Seeing that 

I ~coscp ,cos~ ,cosS+sincp ,s inS~,<  1, 
I coscp, cos$osin S- sincp, cosS  I I ,  

(11.49) 
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( 11.5 0) 

-. l o  obtain estimates for the right-hand sides of (11.50), we take S .  tl and ! I  
from Eqs. (11.34) for constant a = u , , :  

I S = a..t, 

where 

From (II.51) and 111.52) we have 

Hence 

(11.53) 

(11.54) 

Eq. (11.47) for e(, can be simplified. Ser ies  expanding sins,!, cos S,, in 
powers of So and retaining only t e rms  to third order  in S(,, w e  find 

t) - w c ~ s ' f l c 0 s b . a  (" I & +") o , sin 9, pi+ e +$). (11.55) "-7 ('-I- ' s3 dls ,  

Here e,. e2. E ~ ,  eP a r e  constants characterizing the initial part of the trajectory. 
They a r e  expressed in te rms  of S,. t,, q;. qf. p; .  p i ,  p j  by the following equalities 

(11.56) I 
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The e r r o r  in On and the associated e r r o r  Ap(S,,) following the substitution 
of (11.55) fo r  (11.47) a r e  estimated by the equalities 

(11.57) 

The e r r o r  Ap(So) associated with the difference between the calculated 
and t h e  actual velocity u(tj is estimated by 

where ( A a l  is the deviation of the t rue a ( t )  f rom the calculated value. 
The  assumption of constant Ro is also equivalent to some deviation of the 

calculated velocity f rom the t rue value. 
Eqs. (11.8), (11.9), (11.55), (11.39), (11.42), and the last  equality in 

(11.31) enable us  to calculate +o, Aq0 and to es t imate  the result ing e r r o r  Ap(S,,) 
at  the t ime of a r r iva l .  

(11.54) shows that the e r r o r  A S  due to the deviation of the t ra jectory from the 
orthodromy plane i s  sma l l .  
the determination, with adequate precision, of the a r c  of the ell ipse t raced 
by the intersection of the geoid with the orthodromy plane f rom the start ing 
point (q,. L,) to the terminal  point (cp,. id. 

Using the matr ix  (11.21), w e  see that the geoid meets  the orthodromy 
plane along an ell ipse whose semimajo r  axis  l ies  in the Ea r th ' s  equatorial  
plane and is equal to the radius of the Earth 's  equatorial  section, i.e., the 
Earth 's  semimajor  axis  a ;  the semiminor  axis  of the ellipse i s  given by 

Let us  now determine the programmed range. The f i r s t  equation in 

The determination of S,  therefore reduces to 

where 

- 

b'=a\ /1  - - * ( I  - c o s 2 ( ~ ~ s i n 2 I # ~ ) ,  (11.59) 

is the eccentricity of the geoid. 
The square of the eccentricity e' of the ellipse i s  

The length of the a r c  of the ellipse in the orthodromy plane is clear ly  
given by 

(11.62) 

where a is the angle in the orthodromy plane between the vector p, and the 
intersection line of the orthodromy plane with the equator. 

Se r i e s  expanding the integrand in (11.62) in powers of ez and integrating, 
we get 

(11.63) I = aso [ 1 - ( 1  - cos2q, sin* GJ]. 
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The truncation e r r o r  .n this case i s  es t imated a s  

(11.64) 

The determination of the initial pa rame te r s  I$*, I$,, and 1 f rom known 
geographical coordinates of the s tar t ing (vi, 1.) and the terminal  ti;. >.$ point 
of the t ra jectory thus involves the following computational s t ages .  

Determination of the geocentric lati tudes 9,. ~1 f rom the geographical 
latitudes c f i ,  q i :  

cfl, ='~;,?--g e-' sin 2 ~ 1 , ~ .  (11.65) 

Determination of i l c  and So f rom the equalit ies 

Calculation of 1 :  

Finally, calculation of f rom the equation 

(11.66) 

(11.67) 

(11.68) 

In (11.65)-(11.68), L ~ .  (I, (2, a,,, c k ,  e* .  el. E+ are known constants .  
The ove ra l l  maximum e r r o r s  in navigating the object to  the t e rmina l  

point of the t ra jectory with inaccurate initial p a r a m e t e r s  are est imated by 
the following inequalities: 
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A C C E L E R O M E T E R  GUIDANCE* 

W e  will consider a guidance sys t em directly utilizing the acce le romete r  
readings,  without determination of the object coordinates.  The equations of 
motion of the object near  a programmed trajectory will be derived and 
analyzed. 

center  0, maintaining an invariable orientation relative to the Ea r th .  
introduce a right orthogonal system Ol&&,, whose plane OiEoq,, coincides with 
the plane of the programmed trajectory.  
of m a s s  o of the object in the axes  O,&i& is determined by i t s  distance R 
f rom the Ea r th ' s  center  0, and the two angles Az and S. 
between the direction 0,O and the plane O&Q. 
to deviations of the direction 0,O toward the axis  &,. 
the axis  O,Q, and the projection of the direction 0,O onto the plane O,&. 

Suppose that S and R are supplied by some  sources  of information on 
board the object. 
guidance problem in which the angle A t  is invariably z e r o  with known 
accuracy. 

of .Iz (e.g., using iner t ia l  sys t ems)  and then apply this value to guidance 
purposes.  However, knowledge of the exact value of Az is not absolutely 
essential .  In the following we consider a guidance sys t em which u s e s  the 
readings of a suitably aligned accelerometer ;  these readings constitute a 
cer ta in  l inear combination of ~\t and i t s  derivatives.  

Suppose that gyroscopes on board the moving object fix the direction 60 
normal  to the plane of the programmed trajectory.  
mounted in this direction, i t s  readings being ace. 
corresponding to  A z =  0 is designated a!$. 
derivatives,  and t ime.  a!", on the other hand, depends only on S .  R,  and 
t ime.  For known S and R ,  a:& can be formed a t  any given t ime.  The 
difference 

Let the programmed trajectory be given in the plane through the E a r t h ' s  
W e  

The actual  position of the cen te r  

Az is the angle 

S i s  the angle between 
Posit ive angles correspond 

The navigation of the object can  thus be considered a s  a 

The problem evidently can be solved if we f i r s t  measu re  the exact value 

An acce le romete r  i s  
The acce le romete r  reading 

a:* is a function of S, Az, H, their  

ba+ b" =a,  bo -a? L" (111.1) 

can be adopted a s  a measu re  of the deviation of the actual  t r a j ec to ry  f rom 
the programmed path and thus provides a guidance function. 

The following e r r o r s  are 
taken into consideration: acce le romete r  errors [la:,, e r r o r s  Ax, hR in the 
information on S and R ,  and orientation e r r o r s  of the acce le romete r  
sensit ive axis .  

* 

Let u s  der ive the expressions fo r  a:", at,, b a - .  

A n d r e e v , V . D .  and I . V . N o * ' o z h i l o v . -  Inzhenernyi Zhurnal, Mechanics of Rigid Bodies, No.2. 1966. 
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LVe introduce right orthogonal a x e s  O j i g  (Jc. q:':'. 0:'rl':'. T h e i r  c o m m o n  
or ig in  i s  at the center. o f  m a s s  of the object.  T h e  a x i s  11 is d i r ec t ed  a long  
tht= l ine c) , (J ,  the a x i s  5 i s  pa ra l l e l  to the plane of  the p rogrammed  t r a j e c t o r y .  
T h e  a x e s  :'. :' point along the a x i s  :,, the a x i s  I ) '  m a k e s  a n  angle  S'=.S- \i- 

x i t h  the a x i s  t ? ,  and the a x i s  11' m a k e s  a n  angle  S with the a x i s  1 ~ ~ .  

angle .\.v around the ax ' . s  c', and the a x e s  O:v5 a r e  gene ra t ed  by turning the 
a x e s  O ? , I ~ , ; ~  through an  angle 1: about the a x i s  5". 
between the a x e s  :, 11 and E', 11'. :' are given by the m a t r i x  

T h e  a x e s  02h .9  are obtained by turning the a x e s  Ot'q':' through a s m a l l  

T h e  d i r ec t ion  cos ines  

I, To find the directiori  cos ines  between the  a x e s  ?I, ry'. 5' and t . if, > ,  w e  
should c l e a r l y  take  4:= 0 in (111.2). 

The  ins t rumen ta l  error in  the or ien ta t ion  of the a c c e l e r o m e t e r  s ens i t i ve  
a x i s  z , ,  i.e., i t s  deviation f r o m  the d i r ec t ion  ~ ' I S ' I ,  i s  desc r ibed  by ttro s m a l l  
angles  u, and pa, so that  the d i r ec t ion  cos ines  of the a x i s  Z,  r e l a t ive  to the 
a x e s  :'+ 11'. :' a r e  fi . - q, and I .  Let the a c c e l e r o m e t e r  s ens i t i ve  m a s s  be a 
unit point m a s s  at  the point 0 .  For  the a c c e l e r o m e t e r  r ead ings  we then have 

ivhcre 
m a s s  of the object,  gl, i s  the projection of the E a r t h ' s  g rav i ta t ion  on the 
a c c e l e r o m e t e r  s ens i t i ve  m a s s ,  and -\dl i s  the  a c c e l e r o m e t e r  e r r o r .  

the a x e s  oj16 a r e  given by 

i s  the :, projection of the absolu te  acce le ra t ion  of the  c e n t e r  of 

The pro jec t ions  U':. WIi, E'; of the absolu te  acce le ra t ion  of the point 0 on 

tvhrrr dots  denote t i m e  differentiation: (0:. w,,. 

absolu te  angu la r  velocity of the a x e s  0;tg on the co r re spond ing  unit vec to r s .  

F r o m  m a t r i x  (111.2), E q s .  (111.3), (111.4), and the definit ion of the ang le s  ( t , .  p., 
w e  thus find, dropping : e rn i s  of second o r d e r  of s m a l l n e s s ,  

are the pro jec t ions  of the 

IS the E a r t h ' s  g rav i t  xtional f ield i s  cen t r a l ,  we have g;= 4: = 0 ,  g,,=- g .  

l l ~ * = - ~ t ' ~ ~ , - ~ ~ ' ~ ~ ~ ) ( ~ Z - ~ ~ . ) - W . ~ ~ ~ ~ ~ ,  ( 111.5) 

To find u:' (=aio),  w e  should f u r t h e r  take  u, = 0, 6. = 0, ,1z = 0.  

To f o r m  u";? f r o m  (1.[1.4), w e  r e q u i r e  R. d,  and the absolu te  velocity 

Then  
- )  

ll;, = - W'.L 

components  w,, (J,~. W ~ P  of the  a x e s  b"i?;-'. 
S, 3 ,  and t .  However,  only ui I C . J ~ ,  , wi are ava i lab le ,  which a r e  functions of 
S' .  S ' ,  and t ;  ins tead  of R and f i  we only have the  d i s t ances  R---\R, 4 -  14. 
a,! i s  t he re fo re  fo rmed  as  follows: 

T h e s e  components  are functions of 

- .> 

a'! 'J =-U'. ~~ =_  ( R f 1 R ) j l i : .  i O s . W ; . ) - 2 U t ,  ( d + l k , .  (111.6) 
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From Eqs. (111.5), (111.6) and an expression analogous to (111.1) we now 
find 

hac* = - W,B. - (W,, + g) (A2 - a,) - w, + Aac + W,,. (111.7) 

In the right-hand side of Eq. (III.7) w e  insert for q', wq'. w:' their expres- 
sions in te rms  of 6):. a,,, 6):. bz,  Ax, A i ,  A i .  By matrix (111.2) we have 

( In .& I = 6): - O,, - A;. a,,, = 9 Ax+ w,, - q Az, 
0:' = Q,, Az + - d. 

Inserting (111.8) in (111.7). substituting for Wg, wn, W; from (111.4), and 
putting x = R A x .  z = R A z ,  we find 

~ a 6 , = z - ( ( g / R - w ~ - " w " ) z - x ( ( ;  5 11 1 --om E ,)-2wIlX+ 

+ -1R +0,0;) 4- 20k Ad +a, [g + k - R (0; +oj i ) ]  + 
+ B, [ R  (& - op,) + 2do,,] +Aut.  (111.9) 

The accelerometer signal hac* is used for guidance. If the guidance process 
i s  stable and the signal b a t  i s  delivered with a sufficiently high gain, we 
may take the trajectory to be described by the equation 6uL = 0, o r  

+(g/R-o2, -0;) z = f , ( A R ,  AR, x .  2, a,, &. Aut), (III. 1 0) 

where f, i s  a homogeneous function of f i rs t  order of its arguments. 

be negligibly small. 
Let for the time being AR, Ad. x ,  x, a,. fi., A q  and thus also the function f t  

Then from (111.3) 

i + ( g / R  -0; - 03 z = 0. (III . l l)  

For $,' wi<<6$=g/.Q, when the effect of at. wq is ignorable, the x compo- 
nent of motion amounts to periodic oscillations with Schuler frequency and 
amplitude determined by the initial value of the coordinate I of the object 
and its initial ra te  of change. 

value of S is known (with an e r r o r  Ax). 
accelerometer information on the coordinate S for guidance purposes (the 
accelerometer signal will control the engine thrust, say). 

along the axis E'. 

So far  we have neglected guidance in the longitudinal coordinate S .  The 
W e  can thus devise a system using 

If S is  the programmed value of S', the accelerometer should be mounted 
For bag. we obtain, a s  in (111.2), 

aut* = x+(g/R - w:, - w p  - z(dv + OtOf) - 
- 20,; - 2ot AR - AR (;E - -ora,,) - 

-r.[g+@-R((W;t+w;)] +6. [R(;E-wsOr)+2Rwt]+Aat .  

where x /R  i s  the deviation of the actual coordinate S of the object from i ts  
programmed value S', and the angles r, and 6, a r e  the instrumental orienta- 
tion e r r o r s  of the accelerometer axis at ,  analogous,to the angles a*. p.. In 
this case, given stable and sufficiently effective guidance, the S component of 
motion will be described by the equation haL= 0. Together with the equation 
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Sa;, = 0 this gives 

(111.12) 

This  system desc r ibes  the deviation of the motion of the center  of m a s s  
from the programmed trajectory.  
on the s a m e  platform, w e  have fie=&* and Eqs.  (111.12) fully coincide with 
position e r r o r  equations of a two-accelerometer inertial  system. 

guidance in the coordinate I?. 
again fully coincide with the equations of a three-accelerometer  inertial  
system. 

of the two coordinates (-1: and S), and the corresponding coordinates a r e  
measured with an in-r t ia l  system. 
inertial  e r r o r  equations then have the form (111.12). 
entirely s imi l a r  for  the three coordinates A:. S. R .  

Eqs. (111.12) a r e  invariant under rotations of the system Ot,ig about the 
axis  '1. 
t ra jectory lying in a plane of fixed orientation relative to the Ea r th  is not 
essent ia l .  However., to simplify fur ther  treatment,  w e  will retain this 
assumption. 

The above resul ts  were obtained under conditions of stable and sufficiently 
effective (r igid)  accelerometer  guidance. The feasibility of these conditions 
i s  by no means cer ta in .  To check this point, we should consider in some  
detail  the motion of the guided object, which is done he re  for  an aircraf t .  

The projection of forces  on the 
axis 0: gives 

If the accelerometers  a:. d: a r e  mounted 

Note that a third accelerometer  can be mounted along the q' axis  for  
Then the equations daIt, = 0, ha:. = 0, ,!an, = 0 

In cer ta in  c a s e s  accelerometer  signals a r e  not used for guidance in one 

The combined system of guidance and 
The situation i s  

It thus follo.ws that our original assumption of a programmed 

We s t a r t  with the equations of motion. 

m (k';, - g:>) = F $ .  (III. 13) 

where m = const i s  the m a s s  of the object, W':, i s  the projection of the 
absolute acceleration of the cen te r  of m a s s  of the object, mg;,is the projec- 
tion of the gravitational attraction, F$ i s  the projection of aerodynamic 
fo rces  and engine thrust .  

(111.4), if in (111.5) w e  change the sign on the right and take a,= B,= &I;= 0. 

a i r  velocity of the object, v the wind velocity a t  the point 0. 

The expression fo r  the difference Wco-gLe can  be found from Eqs.  (111.5), 

T o  find F;,, let  V be the velocity of the object relative to the earth,  V' the 
Then 

V * = V - V .  V ; * = R l i .  (111.1 4) 

403 



APPENOIX 111 

The axes Ox'y'z' a r e  obtained from 0 ~ 7 5  by two successive rotations: 
through an angle 9, around the axis q and through an angle Bo around the 
axis z' (bringing the axis x* to coincide with the vector V ) .  If V ; ,  V;<<V*, 
we have 

J ' ~  = - v p * ,  e, = v ; y .  (111.15) 

W e  introduce a right orthogonal system of coordinates Oxyz fixed to the 
object; the axis x is  parallel to the wing chord and points in the direction of 
flight, the axis Y lies in the plane of symmetry of the object, and the I axis 
i s  directed to starboard. Assuming small  deviations of the axes Oxyz from 
OX*Y*Z*, we define their relative orientation by three small  rotations: through 
the angles yo, 8 around the axes x', y* (this gives what is generally called a 
semifixed system of coordinates) and through the angle a around the axis z* .  
a and p are  the angle of attack and the angle of side slip,  respectively. 

the following projections:* the drag X ,  the lift Y ,  and the side force 2 .  The 
thrust P is  assumed to lie in the plane of symmetry of the object, making a 
small  angle rp to the axis x .  

To te rms  of second order  in tpo, $, a,  p, yo, cp, Az, we now have 

The aerodynamic forces a r e  generally defined in the semifixed axes by 

Pio = (P - X )  (- 9" - 8 )  + y (YO+ Az) + 2. (111.16) 

For Z we write 

Z = m (qp+C:xb,+  C,"ydy) + m A f,. (111.1 7) 

Here 6,. 6". (1, are  the small  adjustment angles of the ailerons, the elevators, 
and the rudders, C!: C>, C,"Y a r e  the aerodynamic coefficients, m i s  the mass 
of the object, m A f z  is a perturbation force.  

For midcourse flight, when the difference P - X i s  small, the first  term 
on the right in (111.16) is  ignorable; we may further take R = const and Y = m g .  
Eq. (111.13), using (111.16), (111.17), takes the form 

W t o - g p  = g (Yo+Az)+C$ + Cf bx + C ~ Y  by + Af,. (111.18) 

We will now derive the equations of the angular motion of the object about 
i ts  center of mass,  which a r e  needed for the determination of the angle 0 in 
(111.18). 
described by small  rotation angles around the axes E ,  q. 6: the yaw angle J', 
the pitch angle 6, and the roll  angle y .  Then, to te rms  of second order  

The orientation of the body axes O X ~ Z  relative to the axes O L ~  i s  

$"-tp=-!& y o = y .  (111.19) 

We a r e  mainly concerned with the motion of the center of mass  of the 
object. 
substantially less  than the oscillation frequencies characterizing the angular 
stabilization of the object, the equations of motion about the center of mass  
can therefore be written in the form M, = 0, M y  = 0, M, = 0, where M,. ,UY, M ,  
a r e  the projections of the external torque on the axes O x y z .  

See, e.&, L e b e d e v ,  A.A. and L . S . C h e r n o b r o v k i n .  Dinamika poleta (Flight Dynamics). - 
Oborongiz. 1962. 

Since the oscillation frequencies corresponding to this motion a r e  
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The aerodynamic symmet ry  of the object suggests that for  sma l l  O .  r ; .  6 ; .  
<A 11: t h e  torques . I f , .  . I f . .  a r e  independent of I [ ,  6 , .  Therefore,  to t e r m s  of 
second o r d e r  of smz.llness, we have from . \ I ,  = 0, . I f ,  = O* 

(111.20) 

w h e r e  ,ll:, . I f ' .  .lf:c. .\I:..  .If,:). . I f )  a r e  the aerodynamic torque coefficients, 
~\.\J,$ a r e  the perturbing torques.  

To complete the set of the equations of motion, w e  require  expressions 
for the control adjustments,  which c a r  be writ ten in the fo rm 

!III.21) ~ ' ) L = t L < t t Y - i - ~ Z - ~ * ~ ,  1 5 , = m , i l ~ - f i ~ i + k , p ,  1 
L ( r r , = . Y @ a .  -. ). I 

H e r e  n,,,. m,. k,, a r e  the guidance system inductances. The factors  J. - p a ,  
y f lz -u, a r e  the angular stabilization signals f rom the gimbals of the gyro- 
scopic platform generating the axes  Og'q'?. 

The last  equation in (111.21) desc r ibes  the operation of the accelerometer  
output processor ,  u i s  the output signal of this device, i.e.,  the processed 
acce le romete r  output. L and .\' a r e  a t  this s tage a r b i t r a r y  ope ra to r s  
satisfying the condition 

L t O )  = .V(O), o r  tr(6n,, = 0') = 0. (111.22) 

Inserting fo r  K':+.-g:, in Eq. (111.18) i t s  expression from (111.5), (111.4), 
and considering the r-esulting equation in conjunction with Eqs .  ( I I I , l4 ) ,  
(111.15), (111.19)-(III.21), (111.5), we obtain a set of equations describing the 
guided motion of the object: 

(111.23) 

* See, e.+, the bock menrioned in footnote to previous page. 
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For the unperturbed motion 

(III .24) 

For the sake  of simplicity,  we do not introduce any additional symbol to 
denote the variations of the var iables  y. ax, 6,. p. + relative to the values 
specified by Eqs.  (111.24). 
variation, we obtain Eqs .  (111.23), (111.24) in variational form: 

Thus, using the symbol of the variable fo r  its 

(111.2 5) 

Here,  as in Eq. (111.10), 

f t = - x (on - wgwd - 2 0 , ~  + AR (at + 0,,0t) + 
+ 2 A d o l +  a, [g + 8 - R(ot +a;)] + 

+ P. IR ( i t  - @p,,) + 2 d w  J. 
Suppose now that the object is statically s table  in i t s  cour se .  W e  can 

thus take mo = 0 .  
independently of the las t  t h ree  equations. 

implies  that wind is the only perturbing factor  in the system),  we obtain the 
par t icular  solution e6.=p=6x=b = u = b a E * = y + A z =  0. 
equations in (111.25) give 

The f i r s t  seven equations in  (III.25) are then solved 

Setting z e r o  on the right in  the f i r s t  seven equations in (111.25) ( th i s  

The  l a s t  t h ree  

(111.2 6) 

The f i r s t  equation in  (111.26) coincides with the previous equation (111.11). 
Note that Eq. (111.11) was  obtained assuming a sufficiently effective 

guidance. 
(provided that t he re  are no perturbations).  
this  case is not affected by wind perturbation. 

nonlinear ope ra to r s  included. 
t o r s  are the equalit ies (111.22). 

Now we see that the same resu l t  is obtained for any guidance 
The  z component of motion in  

F u r t h e r  note that these r e s u l t s  are valid for quite general  ope ra to r s  L, N ,  
The only constraint  imposed on these opera-  
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Eliminating between Eqs.  (111.25) the var iables  y t 1 . z .  f,, A h ,  by ,  E;. &a:., w e  
write 

(111.27) 

In the derivation of Eqs.  (111.27), a s  before, wind was the only per turba-  
t i o n  i n  the sys t em.  
only on the pa rame tz r s  of the object. 
i n  what follows. 

If I. and .V a r e  polynomials of the differentiation operator  p ,  and w:<<d;, 
,+I! I ?  < ; I ' I :  I '  I$,= const, v;e can investigate the dependence of the gene ra l  sdlution 
of Eqs .  (111.27) on the fo rm of the ope ra to r s  L ,  .V. 
Heaviside t ransform of the solution z ( t ) ,  we wri te  

The coeCficient p in the f i r s t  equation in (111.27) depends 
Its  explicit expression i s  not needed 

If z ( p )  is the Carson-  

. .  
~ p ,  = L ( f )  (P'z+ + f i J  - pk0Q (P, zo. NS, zo, uj. . . .) 

where Q i s  a l inear  homogeneous function of the initial conditions. 

sible for  the undamped Schuler-frequency oscil lations in the solution. 
of the main problem:; in choosing the ope ra to r s  L ( p t  and .\.'(pi is how to 
eliminate these undamped oscil lations.  

(111.2 8) 
( f  +a$ [ L (P) - P0.V ( P )  J 

T h e  factor ( p 2 + w ; i )  in the denominator on the right in (111.28) is respon-  
One 

The  s implest  approach is by taking 

L(pJ=p'+w:, .vlp)=I, (111.2 9) 

when for  p k , l = p k , j , > > w ~  we have 

(111.30) 

then 

(111.32) 

Eqs. (111.29), (111.31) signify that the acce le romete r  readings and the 
initial conditions give the exact z ,  i.e., the si tuation is reduced to guidance 
with a n  ordinary iner t ia l  sys t em.  Note that Eqs. (III.29) are readily general-  
ized to conditions of the fo rm 

where - i ( p j  is a gene ra l  operator .  The  analogs of Eqs.  (111.31), however, 
a r e  m o r e  complicated i n  this  case. 

Another ex t r eme  c a s e  of (111.29), (111.31) is 

L t p ) = l .  N ( P ) = - l ,  (111.33) 



I 

which l e a d s  t o  d i r e c t  a c c e l e r o m e t e r  gu idance .  Then ,  i r r e s p e c t i v e  of the  
valuv o f  k , , - k , , , ,  \ r e  have  f r o m  (111.28) 

i.c,., t ( t ,  h a s  the same i o r m  as b e f o r e ,  a s s u m i n g  a n  inf ini te ly  l a r g e  k , .  

fr.cquency a c c e l e r o m e t e r  c o m p o n e n l s .  T h i s  f i l t e r i n g  c a n  a l w a y s  be a c c o m -  
p l i shed  us ing  filte:,s Lvith small  t i m e  c o n s t a n t s ,  so  that  t h e  long-per iod  
c o m p o n e n t s  a r e  nut a f f e c t e d .  

~ ' r o n i  t h e  f i i ~ s t  s e v e n  e q u a t i o n s  in  (111,25), t ak ing  L = 1, ,V = -1, w e  o b t a i n  
( I  T ! ~ k , , 2 ) h .  ={la, w h e r e  11) i s  a func t ion  of lfz, A.2fX. A , \ !> ,  n,lit,. /';> i . e . ,  a f u n c t i o n  
of t l i?  rigi;t-hand s i d e s  of E q s .  (111.25). 
funct ion is i g n o r a b l e .  

(thLs e m e r g e s  from Eqs .  (111.30), (111.34)). 
equat ions  of mot ion  if w e  u s e  guidance  i n f o r m a t i o n  on i .  
for WL,,# 0, s a y ,  s i n c e  i n  v i r t u e  of t h e  l a s t  equat ion  i n  (111.25) we h a v e  

w;, :::+,. ! ~ k , , , =  c o n s t  ( a n d  ! i k U , > > ~ i ) ,  '1J = 0, we h a v e  i n s t e a d  of (II1.30j 

N r > t e  that  the  c h o i c e  (111.33) i g n o r e s  the  p r o b l e m  of f i l t e r i n g  of the  high-  

T.ct u s  assess the  c o n t r i b u t i o n  of the  r igh t -hand s i d e s  of E q s .  (111.25). 

For pk(,:> 1 t h e  e f fec t  of t h i s  

T h  p r e c e d i n g  a n a l y s i s  led to the e s i s t e n c e  of u n d a m p e d  o s c i l l a t i o n s  
Damping  can b e  i n t r o d u c e d  in  the 

T h i s  i s  a c h i e v e d  

11 = (-2 ' + ~ q ) ' V .  From Eqs. (111.25) for n t , f  0, I , = p L + ( $ .  .V=-1.  1 4 8  *.w;, 

H e r e  for b~k, , , : *w; , ,  ?.,==~u,,!i,V. 
The first t e r m  o n  the  r i g h t  in E q .  (111.35) c o r r e s p o n d s  to a d a m p e d  

t r a n s i e n t .  
For. z,,=ito, zo=u,) t h i s  component  d r o p s  out .  If v. = c c n s t ,  we h a v e  a s t a t i c  
d r v i a t i o n  i ,  =i. I '21. -1 ph, , , .  

( a n d  ~i/t,~?;;> I ) ,  w e  r e p l a c e  (111.30) by 

T h e  s e c o n d  t e r m  for ;r + = i i , , .  ,z,,+u, g i v e s  a n  u n d a m p e d  c o m p o n e n t .  . .  

t..or. 1. = 1 a n d  .!' = -1, tak ing  a g a i n  or,, I 0, cl) =. 0;  I.I;. (812 e - , ~ ~ t $  pk,,? = c o n s t  - q  

Here ior uk,,,~>> 1, ;.?=o~,,,'/t,~..\'. In  t h i s  c a s e  t h e  f r e e  o s c i l l a t i o n s  in  t h e  
s y s t e m  a r e  eventua l ly  d a m p e d  t o  z e r o  and  w e  are lef t  with t h e  s t a t i c  
devia t ion  :,==~.;C~.'UI;. . .  

:!, :- a re  e q u a l  to e a c h  o t h e r ,  and  ;.,;>;.2, 

It is r e a d i l y  s e e n  that  for k,, =$k; t h e  s t a t i c  d e v i a t i o n s  
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